CORPORATE FINANCE FOR LONG-TERM VALUE

Chapter 13: Cost of capital

Part 4: Risk, return and impact

Chapter 13: Cost of capital

The BIG Picture

- 3
- Be How to calculate the cost of financial, social and environmental capital?

Methods

- A company uses the weighted average cost of capital (WACC) to assess the financial attractiveness of projects
- □ WACC is calculated as a weighted average of the cost of equity and the cost of debt
- The next step is to add the cost of social and environmental capital to calculate the cost of integrated capital
- S and E liabilities increase the cost of integrated capital (indicating S+E risk), while S+E assets decrease the cost of integrated capital
- □ In a dynamic setting, the interaction between the different types of capital can be derived

Cost of equity capital

- The cost of equity is the return a company pays to its shareholders, to compensate for the risk of investing their capital
- This depends not only on the risk of the specific investment, but also:
 - **The pricing of risk on similar and other investments**
 - The degree of risk aversion
 - The supply and demand of capital
- The capital asset pricing model (CAPM) gives the cost of equity capital r_i of security (company) *i* given its systematic risk measured by beta β_i :

$$r_i = r_f + \beta_i \cdot \left(E[r_{MKT}] - r_f \right)$$

The security market line

- □ From the cost of equity formula: $r_i = r_f + \beta_i \cdot (E[r_{MKT}] r_f)$
 - The risk premium for security $i: \beta_i \cdot (E[r_{MKT}] r_f)$
 - The market risk premium: $(E[r_{MKT}] r_f)$
- Assuming or estimating the parameters above allows us to draw the security market line for security *i*

Difficulties in practice:

- What is the market portfolio?
- What is the risk-free rate?
- What is the beta of a specific security?
- What is the horizon of the expected return?
- To what extent are historical data representative of the future?

Market risk premium

- □ The market risk premium is defined as the expected market return $E[r_{Mkt}]$ minus the risk-free rate r_f
 - The risk-free rate is derived from the government yield curve, which provides the safest asset in a country for a given maturity
 - The historical risk premium can only be estimated over a long period because markets fluctuate

Market	United States		Europe	World
Period	1928-2021	1971-2021	1900-2017	1900-2017
Risk premium over 1-year government bonds	6.7%	6.7%	3.5%	4.3%
Risk premium over 10-year government bonds	5.1%	4.5%	3.0%	3.2%

Historical risk premium (in %). Source: Damodaran (2022)

The observed risk premium has declined over time

Beta

- A company's beta is a measure of the company's stock price volatility relative to the market's volatility
 - Historical betas can be estimated using linear regression analysis on historical returns against the relevant index (i.e., S&P500, MSCI World Index)
- Example: Nike & Adidas
 - Betas are often calculated on a 5-year monthly basis (60 observations) or a 2-year weekly basis (104 observations)
 - Measuring shorter frequencies leads to higher volatility

		Monthly beta	a	
		Nike		Adidas
	vs S&P500	vs MSCI World	vs DAX30	vs MSCI World
2-year	0.80	0.80	0.81	0.94
5-year	0.92	0.92	0.69	0.81
10-year	0.77	0.73	0.72	0.77
Average	0.83	0.82	0.74	0.84

Nike & Adidas betas

		Weekly beta	1	
		Nike		Adidas
	vs S&P500	vs MSCI World	vs DAX30	vs MSCI World
2-year	1.16	1.20	1.22	1.17
5-year	1.05	1.12	1.07	1.00
10-year	1.01	1.00	0.94	1.02
Average	1.07	1.11	1.08	1.06

Estimating beta for private companies

- 8
- Suppose a Norwegian salmon harvesting company will soon do an IPO
- The company's beta can be measured by considering the betas of other Norwegian salmon harvesters
- How to aggregate observations?
 - Average or Median?
 - Outliers? Norway Royal Salmon has a 5-year monthly beta of 0.00
 - Excluding Royal, the average 5-year monthly beta (0.54) is close to the median (0.55)

vs MSCI World	5-year monthly beta	2-year weekly beta	Average beta
Bakkafrost	0.41	0.48	0.45
SalMar	0.31	0.21	0.26
Mowi	0.70	0.46	0.58
Leroy Seafood	0.55	0.58	0.57
Austevoll Seafood	0.64	0.59	0.62
Grieg Seafood	0.62	0.74	0.68
Norway Royal Salmon	0.00	0.34	0.17
Average	0.46	0.48	0.47
Median	0.55	0.48	0.57
Average (without Royal)	0.54	0.51	0.52

Industry betas for Norwegian salmon harvesting

Calculating the cost of equity capital

Problem

Suppose the risk-free rate is 2% and the market risk premium is 4%. What is the cost of equity capital r_i for a Norwegian salmon farmer?

vs MSCI World	5-year monthly beta	2-year weekly beta	Average beta
Bakkafrost	0.41	0.48	0.45
SalMar	0.31	0.21	0.26
Mowi	0.70	0.46	0.58
Leroy Seafood	0.55	0.58	0.57
Austevoll Seafood	0.64	0.59	0.62
Grieg Seafood	0.62	0.74	0.68
Norway Royal Salmon	0.00	0.34	0.17
Average	0.46	0.48	0.47
Median	0.55	0.48	0.57
Average (without Royal)	0.54	0.51	0.52

Industry betas for Norwegian salmon harvesting

Calculating the cost of equity capital

Problem

Suppose the risk-free rate is 2% and the market risk premium is 4%. What is the cost of equity capital r_i for a Norwegian salmon farmer?

Solution

We choose the monthly beta, which is more stable Next, we choose the industry average without the outlier, which gives a beta of 0.54

The cost of equity capital is then:

$$r_i = r_f + \beta_i \cdot (E[r_{MKT}] - r_f) = 2\% + 0.54 \cdot 4\% = 4.2\%$$

Industry betas for Norwegian salmon harvesting

vs MSCI World	5-year monthly beta	2-year weekly beta	Average beta
Bakkafrost	0.41	0.48	0.45
SalMar	0.31	0.21	0.26
Mowi	0.70	0.46	0.58
Leroy Seafood	0.55	0.58	0.57
Austevoll Seafood	0.64	0.59	0.62
Grieg Seafood	0.62	0.74	0.68
Norway Royal Salmon	0.00	0.34	0.17
Average	0.46	0.48	0.47
Median	0.55	0.48	0.57
Average (without Royal)	0.54	0.51	0.52

Cost of debt capital

- 11
 - Debt betas can also be estimated using CAPM, although more difficult due to infrequent trading of most public debt

 \Box The cost of debt r_D is more commonly calculated using credit ratings:

 $E[y] = (1 - PD) \cdot y + PD \cdot (y - LGD) = y - PD \cdot LGD = r_D$

$y =$ the yield \leftarrow can be observed in the market
$PD =$ the probability of default \rightarrow c require estimates
$LGD = the loss given default \rightarrow$

Rating agency	Moody's	S&P's and Fitch	Long-term average default rate	Debt betas
Type of bonds	Investment	grade bonds		
	Aaa Aa A Baa	AAA AA A BBB	0.00% 0.02% 0.05% 0.16%	<0.05 0.10
Type of bonds	Junk or hig	h yield bonds		
	Ba B Caa	BB B CCCC	0.61% 3.33%	0.17 0.26 0.31
	Ca C	CC C	27.08%	-

Source: S&P Global Ratings (2020a) & Berk and DeMarzo (2020)

Calculating the cost of debt capital

Problem

The Norwegian salmon farmer, SalMar, has a rating of BBB and a yield of 3.22% in June 2022. The loss given default is 60%. What is SalMar's cost of debt capital r_D ?

Rating agency	Moody's	S&P's and Fitch	Long-term average default rate	Debt betas
Type of bonds	Investment	grade bonds		
	Aaa Aa A Baa	AAA AA A BBB	0.00% 0.02% 0.05% 0.16%	<0.05 0.10
Type of bonds	Junk or hig	h yield bonds		
	Ba B Caa	BB B CCC	0.61% 3.33%	0.17 0.26 0.31
	Ca C	CC C	27.08%	-

Source: S&P Global Ratings (2020a) & Berk and DeMarzo (2020)

Calculating the cost of debt capital

Problem

The Norwegian salmon farmer, SalMar, has a rating of BBB and a yield of 3.22% in June 2022. The loss given default is 60%. What is SalMar's cost of debt capital r_D ?

Solution

A BBB rating implies a probability of default of 0.16%

Therefore, the cost of capital of SalMar is:

$$r_D = y - PD \cdot LGD = 3.22\% - 0.16\% * 60\% = 3.12\%$$

Rating agency	Moody's	S&P's and Fitch	Long-term average default rate	Debt betas
Type of bonds	Investment	grade bonds		
	Aaa	AAA	0.00%	
	Aa	AA	0.02%	0.05
	А	А	0.05%	<0.05
	Baa	BBB	0.16%	0.10
Type of bonds	Junk or hig	h yield bonds		
	Ba	BB	0.61%	0.17
	В	В	3.33%	0.26
	Caa	CCC		0.31
	Ca	CC	27.08%	-
	С	С		-

Source: S&P Global Ratings (2020a) & Berk and DeMarzo (2020)

Weighted average cost of capital (WACC)

- The company's overall cost of capital r_U , also known as the weighted average cost of capital (*WACC*) is a weighted average of the cost of equity r_E and the cost of debt r_D
- □ Use the equation for enterprise value: V = E + D to calculate the weights

			V		
	Value	Discounted at		Value	Discounted at
Assets	100	?%	Debt	D = 40	2.5%
			Equity	E = 60	10%
Enterprise value	V = 100	?%	Enterprise value	V = 100	?%
	WAC	$C = 0.6 \cdot 10\%$	$+ 0.4 \cdot 2.5\% = 7.0$	%	

$$WACC = r_U = \frac{E}{V} \cdot r_E + \frac{D}{V} \cdot r_D$$

After-tax WACC

- □ As interest expenses can be deducted from taxable income, the after-tax interest rate is relevant for a company's net cost of debt capital: $r_D \cdot (1 \tau_C)$
- \Box Whereby τ_c is the company's tax rate. The tax-adjusted WACC formula becomes:
- $\Box \quad \text{After-tax } WACC = \frac{E}{V} \cdot r_E + \frac{D}{V} \cdot r_D \cdot (1 \tau_C)$
- The tax savings reduce the cost of capital of a levered company in comparison to the cost of capital of an unlevered company r_U
- $\Box \quad \text{After-tax } WACC = r_U \frac{D}{V} \cdot r_D \cdot \tau_C$
- Assuming a 20% tax rate in the previous example:
 - The after-tax *WACC* is $0.6 \cdot 10\% + 0.4 \cdot 2.5\% \cdot (1 0.20) = 6.8\%$

• The tax saving is
$$\frac{D}{V} \cdot r_D \cdot \tau_C = 0.4 \cdot 2.5\% \cdot (1 - 0.20) = 0.2\%$$

Calculating the WACC

Problem

Company Y has a cost of equity capital of 8% and a cost of debt capital of 3%. The company's market capitalisation is \in 200 million and its outstanding debt \in 70 million. The corporate tax rate is 25%. What is the unlevered cost of capital and what is the after-tax WACC for company Y?

Solution

The unlevered cost of capital $r_U = \frac{E}{V} \cdot r_E + \frac{D}{V} \cdot r_D = \frac{200}{270} \cdot 8\% + \frac{70}{270} \cdot 3\% = 6.7\%$

The after-tax $WACC = \frac{E}{V} \cdot r_E + \frac{D}{V} \cdot r_D \cdot (1 - \tau_C) = \frac{200}{270} \cdot 8\% + \frac{70}{270} \cdot 3\% * (1 - 0.25) = 6.5\%$

Project cost of capital

- Company betas reflect the market risk of the average project in a company, but project risk can deviate substantially from company risk
- Company betas β_E are levered (i.e., they reflect the leverage of the companies), to get the unlevered beta β_U :

$$\beta_U = \frac{E}{E+D} \cdot \beta_E + \frac{D}{E+D} \cdot \beta_D$$

 β_U

Industry betas	for	Norwegian	salmon	harvesting
----------------	-----	-----------	--------	------------

vs MSCI World	5-year monthly beta	2-year weekly beta	E / (E + D)	Unlevered 5-year monthly beta	Unlevered 2-year weekly beta	Average beta
Bakkafrost	0.41	0.48	0.77	0.32	0.37	0.34
SalMar	0.31	0.21	0.67	0.21	0.14	0.17
Mowi	0.70	0.46	0.63	0.44	0.29	0.36
Leroy Seafood	0.55	0.58	0.71	0.39	0.41	0.40
Austevoll Seafood	0.64	0.59	0.55	0.35	0.32	0.34
Grieg Seafood	0.62	0.74	0.64	0.39	0.47	0.43
Norway Royal Salmon	0.00	0.34	0.58	0.00	0.20	0.10
Average	0.46	0.48	0.65	0.30	0.31	0.31
Median	0.55	0.48	0.64	0.35	0.32	0.34
Average (without Royal)	0.54	0.51	0.66	0.35	0.33	0.34

Project cost of capital

To calculate the project cost of capital

- The first step is to find the relevant equity beta (from the specific industry)
- □ The next step is from levered equity beta to unlevered asset beta (previous slide)
- The final step is to select the relevant asset beta for the project

Asset betas

Source: Data from Damodaran (2022)

Calculating the project cost of capital

Problem

Pharma company X wants to build a new headquarters. It is fully financed with equity. The risk-free rate is 3% and the market risk premium is 4%. What is the project's cost of capital?

Calculating the project cost of capital

Problem

Pharma company X wants to build a new headquarters. It is fully financed with equity. The risk-free rate is 3% and the market risk premium is 4%. What is the project's cost of capital?

Solution

Since it's a real estate project, we take the real estate asset beta of 0.58 instead of the pharma beta of 0.97

Since the project is fully-equity financed we use the unlevered beta:

$$r_u = r_E = r_f + \beta_i \cdot (E[r_{MKT}] - r_f) = 3\% + 0.58 \cdot 4\% = 5.3\%$$

Adjusted cost of equity capital

- 22
- There is empirical evidence that S and E affect the cost of equity and the cost of debt
 - Companies with better sustainability scores tend to have cheaper financing and better access to finance
- Companies with better sustainability performance have lower betas for social risk β_i^{SF} and/or environmental risk β_i^{SF}

Adjusted cost of equity capital: $r_i = r_f + \beta_i^{MKT} \cdot RP_{MKT} + \beta_i^{SF} \cdot RP_{SF} + \beta_i^{EF} \cdot RP_{EF}$

RP = risk premium

 The challenge is to estimate company betas for social and environmental risk

Type of risk premium	Risk premium (in %)
Social risk premium <i>RP_{SF}</i>	1% - 1.5%
Environmental risk premium <i>RP_{EF}</i>	1.9%

Estimating social and environmental betas

- The challenge is to estimate company betas for social and environmental risk
 - We cannot derive historical betas like those for the market risk, as there is no reliable history of the social and environmental index
 - A comprehensive approach is a value-based approach using estimates for SV and EV based on material social and environmental factors
- SV and EV are negatively related to the social and environmental betas
 - Negative values for *SV* and *EV* indicate that a company causes social and environmental problems, meaning it is exposed to social and environmental risks, which implies a positive beta β_{i}^{SF} , $\beta_{i}^{EF} > 0$
 - Positive values for *SV* and *EV* show that a company contributes to solving social and environmental challenges, implying a negative beta β_i^{SF} , $\beta_i^{EF} < 0$
- A pragmatic method to gauge the effect of a company's social and environmental risks on its financial riskprofile is to relate SV and EV to FV

Factor betas:
$$\beta_i^{SF} = -\frac{SV}{FV}$$
 and $\beta_i^{EF} = -\frac{EV}{FV}$

Alternatives for estimating social and environmental betas

- When data are not available to perform a complete calculation of SV and EV, you can make ad hoc assessments of the factor betas according to S and E exposures
- Another approach uses ESG ratings:
 - Low S and E scores indicate poor performance and higher exposure to S and E risks, so high betas, and vice versa: high S and E scores lead to low or even negative betas
 - Given availability ESG ratings, this method is tempting
- But ESG ratings have several drawbacks
 - ESG ratings cannot be compared across industries
 - No universal framework to define which ESG risks are material and should therefore be included
 - Ratings only measure inward impact (single materiality) and not outword impact (double materiality)

Adjusted cost of debt capital

- There is also evidence that sustainability concerns lead to higher cost of debt capital (Chava, 2014) Adjusted cost of debt capital: $r_D = y - PD \cdot LGD$
- Sustainability risks can increase the probability of default PD, which translates to a higher contractual interest rate y
 - Example: ING's sustainability linked loan with Philips in 2017 (see next slide)
- The adjustment for sustainability risks is small for investment grade debt, while riskier junk bonds can have bigger adjustments

Loan facility to Philips

- If sustainability performance up,
- interest rate goes down (and vice versa)
 - Measured by Sustainalytics
 - Up to 5-10% of credit spread
 (if spread 50 bps -> 2 to 5 bps)

The cost of social and environmental capital

- S and E also have their own cost of capital, which tend to be much lower than the cost of financial capital
 - □ Low social discount rates imply that current and future generations are treated more or less equally (time preference $\delta \approx 0$) Growth rate driv

Social discount rate $r^s = \delta + \eta \cdot g + L$ with $g = 1.3\%$				
Time preference δ	Elasticity η	Risk parameter L	Discount rate r^s	
0%	1.5	0.2%	2.2%	

Growth rate driven by growth in consumption

Use social discount rate for both SV and EV

- 2% (= 0% + 1.5 * 1.3%) without risk parameter
- 2.2% (= 0% + 1.5 * 1.3% + 0.2%) with risk parameter

Reflects the extreme element of macroeconomic risk of rare disasters or society collapse

Applying the social discount rate

What does such a low cost of social and environmental capital mean?

A lower cost of capital leads to a higher present value of social and environmental flows

Medtech company	Value in EUR millions	
Financial flows		
Annual cash flows (in EUR millions)	450	
Discount factor	6.6%	
Financial value (PV in EUR millions)	6,818	
Social flows		
Quality life years extended annually	2,000	
Quality life year in EUR	75,000	
Annual social flows (in EUR millions)	150 🗲	
Discount factor	2.2%	
Social value (PV in EUR millions)	6,818	
Company value (in EUR millions)	13,636	

	Oil company	Value in EUR millions
	Financial flows	
	Annual cash flows (in EUR millions)	800
	Discount factor	6.6%
	Financial value (PV in EUR millions)	12,121
	Environmental flows	
	Carbon emissions (thousands of tonnes CO_2)	1,800
Social flows are 3x smaller	Shadow price of emissions, EUR/tonne	200
than financial flows	Annual environmental flows (in EUR millions)	-360
	Discount factor	2.2%
Social value is equal to financial value	Environmental value (PV in EUR millions)	-16,364 🗲
Positive SV leads to	Company value (in EUR millions)	-4,242
higher company value		

nmental flows are 2x er than financial flows

The cost of integrated capital

Putting together r_i^{FV} (adjusted WACC), r^{SV} and r^{EV} in the cost of integrated capital r_i^{IV} gives the return demanded on all types of capital combined:

$$r_i^{IV} = \frac{FV}{IV} \cdot r_i^{FV} + \frac{SV}{IV} \cdot r^{SV} + \frac{EV}{IV} \cdot r^{EV}$$

- The cost of integrated capital r_i^{IV} is a weighted average of the cost of financial, social and environmental capital
- □ The weights are the size of each capital: IV = FV + SV + EV
- Remember: the cost of S + E capital is the social discount rate $r^{SV} = r^{EV} = r^s$

Cost of integrated capital in static setting

30

The cost of integrated capital: $r_i^{IV} = \frac{FV}{IV} \cdot r_i^{FV} + \frac{SV}{IV} \cdot r^{SV} + \frac{EV}{IV} \cdot r^{EV}$

 The cost of integrated capital declines with higher amounts of social and environmental capital (assets) and rises when social and environmental capital falls and goes negative (liabilities)

Cost of integrated capital in dynamic setting

31

- The adjusted cost of financial capital r^{FV} rises with increasing social and environmental risks
 - **The dispersion in the cost of integrated capital widens in a dynamic simulation**

Social and environmental factors influence the adjusted cost of financial capital r^{FV} in a limited way (5.1% to 7.0%), while the cost of integrated capital r^{IV} varies from 4.1% to 11.7%

Inditex's cost of integrated capital

• Cost of financial capital:

•
$$r_E = r_f + \beta_i \cdot (E[r_{MKT}] - r_f) = 1.5\% + 1.21 * 5\% = 7.6\%$$

• $r_D = r_f + CRP = 1.5\% + 1.0\% = 2.5\%$
• $WACC = \frac{E}{V} \cdot r_E + \frac{D}{V} \cdot r_D = \frac{82}{79} * 7.6\% - \frac{3}{79} * 2.5\% = 7.8\%$

Adjusted cost of financial capital

$$\beta_{i}^{SF} = -\frac{SV}{FV} = -\frac{146}{79} = -1.84$$

$$\beta_{i}^{EF} = -\frac{EV}{FV} = -\frac{-183}{79} = 2.31$$

$$r_{E} = r_{f} + \beta_{i}^{MKT} \cdot RP_{MKT} + \beta_{i}^{SF} \cdot RP_{SF} + \beta_{i}^{EF} \cdot RP_{EF} = 1.5\% + 1.21 * 5\% - 1.84 * 1.25\% + 2.31 * 1.9\% = 9.6\%$$

$$WACC = \frac{E}{V} \cdot r_{E} + \frac{D}{V} \cdot r_{D} = \frac{82}{79} * 9.6\% - \frac{3}{79} * 2.5\% = 9.9\%$$

Cost of integrated capital

$$r_i^{IV} = \frac{FV}{IV} \cdot r_i^{FV} + \frac{SV}{IV} \cdot r^{SV} + \frac{EV}{IV} \cdot r^{EV} = \frac{79}{42} \cdot 9.9\% + \frac{146}{42} \cdot 2.2\% + \frac{-183}{42} \cdot 2.2\% = 16.6\%$$

IV calculation	Value	
FV (enterprise value)	79	
Negative SV	-137	
Positive SV	283	
Negative EV	-183	
IV	42	

Risk-free rate, r_f	1.5%
Mkt. risk premium, RP _{MKT}	5%
Company beta, β_i^{MKT}	1.21
Credit risk premium, CRP	1%
Social risk premium, RPSF	1.25%
Env. risk premium, RP _{EF}	1.9%

Inditex's cost of integrated capital - interpretation

- **Cost of financial capital:** WACC = 7.8%
- **Adjusted** cost of financial capital: WACC = 9.9%
- **Cost of integrated capital:** $r_i^{IV} = 16.6\%$

IV calculation	Value	
FV (enterprise value)	79	
Negative SV	-137	
Positive SV	283	
Negative EV	-183	
IV	42	

□ Step 1: from cost of F capital to adjusted cost of F capital: 9.9% - 7.8% = 2.1%

Step 2: from adjusted cost of F capital to I capital: 16.6% - 9.9% = 6.7%

 \Box $r_i^{IV} > WACC$, because of net social and environmental liabilities

Conclusions

- The cost of financial capital r^{FV} is the required minimum return on financial capital that is used in investment decisions
- □ S (social) and E (environmental) risks impact the cost of financial capital
- The cost of social capital r^{SV} and environmental capital r^{EV} tend to be much lower than a company's cost of financial capital
- The cost of integrated capital r^{IV} gives an indication of the overall risk of the company, which can differ substantially from a purely financial or an ESG integrated perspective