CORPORATE FINANCE FOR LONG-TERM VALUE

Chapter 15: Capital structure

Part 5: Corporate financial policies

Chapter 15: Capital structure

The BIG Picture

- How should companies decide on their capital structure?
- Capital structure is the funding mix of equity and debt

Discussion

- □ In a perfect capital market
 - 1. capital structure is irrelevant for company value, and
 - 2. the cost of equity increases with leverage (debt financing)
- In a world with imperfections, like corporate taxes, bankruptcy cost and information asymmetries, capital structure matters to financial value
- Companies generate also asset and liabilities on E and S
- The integrated capital structure (F, S and E) is an indicator of a company's overall risk profile

Financial capital structure

- Financial capital structure is about the funding of the company's business activities
- It refers to the company's distribution of equity, debt and hybrid securities, referred to as leverage:

 $Leverage = \frac{Debt}{Value} = \frac{Debt}{Total \ assets}$

 Companies with a high proportion of debt on their balance sheet are highly levered / leveraged

Financial capital structure

- □ Leverage is measured by ratios that express:
 - □ The distribution of the types of securities debt-equity ratio or debt-assets ratio
 - □ The ability to bear the interest burden interest coverage ratio

F assets	25	F debt	5
		F equity	20
Total F assets	25	Total F liabilities	25

- Debt-equity ratio = 5/20 = 0.25
- Debt-assets ratio = 5 / 25 = 0.20

Theories on perfect capital markets

- Modigliani and Miller (1958): corporate finance in the real world is a complex topic
- Arbitrage argument: due to buying and selling a company's shares with borrowed funds, price differences on leverage should disappear
- □ Two MM propositions:
 - MM1: In a perfect capital market, the value of the levered company V_L equals the value of the unlevered company V_U
 - MM2: The cost of capital of levered equity increases with the company's debtequity ratio (based on market values of debt and equity)

Theories on perfect capital markets

7

□ MM1: In a perfect capital market, the value of the levered company V_L equals the value of the unlevered company V_U

 $V_U = V_L$

$$V_U = rac{FCF_U}{r_U}$$
 $V_L = rac{FCF_{equity}}{r_{equity}} + rac{FCF_{debt}}{r_{debt}}$

 MM2: The cost of capital of levered equity increases with the company's market value debt-equity ratio

$$r_{equity} = r_U + \frac{debt}{equity} * (r_U - r_{debt})$$

which follows from: wacc =
$$r_U = \frac{equity}{V_L} * r_{equity} + \frac{debt}{V_L} * r_{debt}$$

Cost of equity with rising leverage

Equity (as %)	Debt (as %)	r _{equity}	r _{debt}	r_U	Equity/V	Debt/V (leverage)	Debt/ Equity	WACC
100	0	7.0%	2.0%	7.0%	1	0	0.0	7.0%
90	10	7.6%	2.0%	7.0%	0.9	0.1	0.1	7.0%
80	20	8.3%	2.0%	7.0%	0.8	0.2	0.3	7.0%
70	30	9.1%	2.0%	7.0%	0.7	0.3	0.4	7.0%
60	40	10.3%	2.0%	7.0%	0.6	0.4	0.7	7.0%
50	50	11.9%	2.1%	7.0%	0.5	0.5	1.0	7.0%
40	60	14.1%	2.3%	7.0%	0.4	0.6	1.5	7.0%
30	70	16.8%	2.8%	7.0%	0.3	0.7	2.3	7.0%
20	80	20.2%	3.7%	7.0%	0.2	0.8	4.0	7.0%
10	90	25.0%	5.0%	7.0%	0.1	0.9	9.0	7.0%
0	100	N/A	7.0%	7.0%	0	1	N/A	7.0%

Cost of equity with rising leverage

Leverage = Debt/V

Impact of debt issuance

10

■ A change in capital structure does not mean a change in value (MM1),

while it does mean a change in the cost of equity capital (MM2)

Company without I	everage				No debt	With debt	
F assets	1.000	F debt	1.000	F assets	1,000	1,000 <	🗧 No change in value
	.,		.,	F equity	1,000	600	
				F debt	0	400	
	4 000		1.000	r_U	10%	10%	
Iotal F assets	1,000	Iotal F liabilities	1,000	r_{debt}	N/A	2%	
				r _{equity}	10%	15.3% <	Change in cost of
Company with leve	rage			Free cash flow (FCF)	100	100	equity capital
F assets	1,000	F debt	400	Interest	0	8	
				Cash flow to equity	100	92	
		F equity	600	Number of shares	200	200	
	1 000		1 000	EPS	0.50	0.46	
Total F assets	1,000	Total F habilities	1,000	Value per share	5	3	

Financial capital structure with imperfections

- 11
- □ MM1 shows the *conservation of value principle*: in perfect capital
 - markets, financial transactions do not add or destroy financial value (FV)
- Market imperfections that matter for financial capital structure include:
 - **Corporate taxes** τ_{i} and bankruptcy costs (static trade-off theory)
 - Information asymmetries (pecking order theory)

Static trade-off theory

In perfect capital markets, companies can go bankrupt at zero cost, while

in the real world, such losses do occur

- Managers recognise the offsetting effects
 of tax benefits and bankruptcy costs
- This suggests that there is an optimal point whereby overall cost of capital (WACC) is minimalised

Debt/V (leverage)

Interest tax shield

13

Tax benefits are also known as the interest tax shield

Tax shield = $\tau_{c} * interest payments = \tau_{c} * r_{debt} * debt$

After-tax WACC = $\frac{equity}{V_L} * r_{equity} + \frac{debt}{V_L} * r_{debt} * (1 - \tau_c)$

MM1 (with taxes):

 $V_U = V_L + \tau_s * debt$

MM2 (with taxes):

$$r_{equity} = r_U + \frac{debt}{equity} * (r_U - r_{debt})(1 - \tau_c)$$

Debt?	No debt	With debt of 400	No debt	With debt of 400
Taxes?	No taxes	No taxes	With taxes	With taxes
Cash flow	100	100	100	100
Interest payments (2%)	0	8	0	8
EBIT	100	92	100	92
Corporate tax rate (τ_{c})	0%	0%	25%	25%
Taxes paid	0	0	25	23
Net income	100	92	75	69
Net income + interest	100	100	75	77
Tax shield ($\tau_{_c}$ x interest)	0	0	0	2

Bankruptcy costs

- As a company's leverage increases, the chance also rises that it cannot meet its debt obligations
- A company is in distress when it's close to being unable to meet debt obligations
- In a perfect capital market, there are no costs to reorganising the company, but in the real world, there are direct and indirect costs of bankruptcy
 - Direct costs include fees paid to administrators, accountants, investment bankers, lawyers and courts
 - Indirect costs include the value loss of missed sales and investments

Static trade-off theory

- Taxes and bankruptcy costs have opposite implications for capital structure:
 - Taxes give incentives for higher leverage
 - Bankruptcy costs incentivise managers to reduce leverage
- □ The optimal capital structure:
 - Overall cost of capital is minimalised
 - A sizeable tax benefit is obtained
 - Without excessive bankruptcy costs
- Trade-off theory predicts that companies' debt ratios move towards a target capital structure, which is determined by the balance of tax benefits and bankruptcy/distress costs

Agency costs

- □ Agency costs result from the principal-agent conflict, which regards:
 - Tensions between owners/financiers (the principals) and management (the agents)
 - Tensions among financiers (debtholders vs shareholders)
- Information asymmetry: managers know much better what is happening at the company than its financiers
- Higher information asymmetry leads to higher cost of capital
- Information asymmetries are largest for equity issues

Pecking order theory

Managers prefer:

- 1. Internal finance (from cash flows and retained earnings)
- 2. External debt
- 3. External equity

Behavioural issues in capital structure

- Corporate financial policies such as capital structure choices are also driven by behavioural issues:
 - Those of managers themselves internal errors
 - Optimistic managers use leverage more aggressively, overestimate cash flows and the interest levels they can afford to pay
 - Optimistic managers tend to think their company's stock is undervalued
 - Optimistic managers are likely to choose higher debt levels than rational managers
 - Those of the markets they operate in external errors
 - (Temporarily) irrational markets can result in the absence of funding opportunities for positive NPV projects

E and S affecting capital structure

- □ E and S risks can affect:
 - The business model and operations which affect interest coverage ratios and project NPVs
 - Investor perceptions which affect cost of capital, valuation and financial capital structure

E and S affecting the business model of an airline

- With internalisation, E and S risk materialises:
 - Subsidies disappear
 - Carbon taxes increase costs
 - Demand for air travel drops
- Leads to 30% reduction in NPV (total assets: $30 \rightarrow 21$)
 - Increased probability of default leads to 10% drop in value of debt
 - NPV of F assets drops more than debt value, so leverage rises $(0.40 \rightarrow 0.51)$

Company befor	e inter	nalisation		
F assets	30	F debt 12		
		F equity	18	
Total assets	30	Total liabilities	30	
		Debt-assets rati	io: 12 / 3	30 = 0.40
Company after	internc	llisation		
F assets	21	F debt	10.8	12 x 0.9 = 1
		F equity	10.2	21 – 10.8 =
Total assets	21	Total liabilities	21	

Debt-assets ratio: 10.8 / 21 = 0.51

0.8

10.2

E and S affecting investor perceptions

- In anticipation of possible internalisation of E and S, investors may perceive higher financial risk
 - Leads to lower asset value due to higher discount rate and/or lower expected cash flows
- Lower expected cash flows result from investors attaching higher probabilities to more negative scenarios
- Higher cost of capital results from higher expected variations in outcomes and sensitivity to market returns

Capital structure of E and S

- Expressing externalities on E and S in
 capital structure ratios helps in identifying
 and understanding the size of the risks
 involved
 - E and S assets indicate value creation by the company for society
 - E and S liabilities (debt) indicate value destruction by the company at the cost of society

S assets	20	S debt	15
		S equity	5
Total assets	20	Total liabilities	20

S assets > S debt, so net value creation on S S leverage ratio: 15 / 20 = 0.75

E assets	15	E debt	25
		E equity	-10
Total assets	15	Total liabilities	15

E assets < E debt, so net value destruction on E E leverage ratio: 25 / 15 = 1.67

Integrated capital structure

- The integrated capital structure is the capital structure of E, S and F combined
- Integrated leverage indicates the risk in a company's integrated capital structure

 $Integrated \ leverage = \frac{Integrated \ debt}{Integrated \ assets}$

Leverage ratios	
F debt / F assets	0.20
S debt / S assets	0.25
E debt / E assets	1.67
I debt / I assets	0.58

Insight: high integrated leverage

Composition of assets	
F assets / I assets	0.42
S assets / I assets	0.33
E assets / I assets	0.25
Total	1.00

Insight: evenly distributed

S assets	20	S debt	15
		S equity	5
E assets	15	E debt	25
		E equity	-10
F assets	25	F debt	5
		F equity	20
Total integrated assets	60	Total integrated liabilities	60

Composition of debt	
F debt / I debt	0.14
S debt / I debt	0.14
E debt / I debt	0.71
Total	1.00

Insight: E is problematic

Peer group analysis

Packaging company 1 has:

- A low E leverage ratio compared to the average mining company
- A high E leverage ratio compared to other packaging companies
- So the company is at a competitive disadvantage
- Mining company 1 has:
 - A high E leverage ratio compared to the average packaging company
 - A low E leverage ratio compared to other mining companies
 - So the company is at a competitive advantage

Peer group 1	E debt / E assets
Packaging company 1	1.67
Packaging company 2	1.22
Packaging company 3	1.37
Packaging companies average	1.42

Peer group 2	E debt / E assets
Mining company 1	3.41
Mining company 2	7.58
Mining company 3	6.19
Mining companies average	5.73

Inditex

- Using Inditex's value components, the integrated balance sheet can be generated:
 - Positive SV and EV = assets
 - Negative SV and EV = debt
 - Assets debt = equity
- □ Calculating leverage:
 - Financial leverage:
 F debt / F assets = -3 / 79 = -4%
 - Integrated leverage:
 I debt / I assets =
 - (-3 + 137 + 183) / 362 = **87%**
- Insight: Inditex is riskier

Conclusions

- □ The Modigliani-Miller theorems say that in a perfect world:
 - Financial capital structure is irrelevant for financial value (MM1)
 - The cost of equity increases with leverage (MM2)
- Market imperfections (taxes and bankruptcy costs) explain under what conditions financial capital structure does matter to financial value
- E and S risks affect capital structure through changes in the business model and investor perceptions
- Companies also generate assets and liabilities on E and S
- The integrated balance sheet offers a richer perspective on the company's assets and liabilities than a balance sheet that is limited to F