CORPORATE FINANCE FOR LONG-TERM VALUE

Chapter 5: Calculating social and environmental value

Part 2: Discount rates and valuation methods

Chapter 5: Calculating social and environmental value

The BIG Picture

□ How to make social and environmental value comparable to financial value?

Solution

- □ Select material social (S) and environmental (E) factors
- Express them in their own units (Q)
- Monetise the S and E factors with shadow prices (SP)
- Use the standard DCF model to discount the value flows (Q * SP)
- □ The resulting SV and EV is comparable to FV

Basics of value calculation

 The discounted cash flow (DCF) model is commonly used to calculate the value of a project or company:

$$V = \sum_{n=0}^{N} \frac{CF_n}{(1+r)^n}$$

CF = expected cash flows

r = discount rate

n = number of periods

This chapter shows how to calculate SV and EV using the DCF model

How to measure SV and EV

- \square S and E issues can be expressed in their own units Q
- □ Then multiplied by their respective shadow price SP
- □ The calculation of the value flows is:

 $VF = Q \cdot SP$

The social value flows SVF and environmental value flows EVF are discounted using the DCF model to obtain SV and EV:

$$SV = \sum_{n=0}^{N} \frac{SVF_n}{(1+r)^n}$$
 $EV = \sum_{n=0}^{N} \frac{EVF_n}{(1+r)^n}$

Example

□ The cash flows of a steel project

Year	2023	2024	2025	2026	2027	2028
Cash flows, in \$ millions	-100	40	40	40	40	40
Carbon emissions, in thousands tons	0	30	30	30	30	30

□ Use the shadow carbon price of \$224 per 1 ton of CO_2 to calculate EVF

Year	2023	2024	2025	2026	2027	2028
Cash flows, in \$ millions	-100	40	40	40	40	40
Carbon emissions, in thousands tons	0	30	30	30	30	30
Shadow carbon price, in \$	224	224	224	224	224	224
Environmental value flows, in \$ millions	0.0	-6.7	-6.7	-6.7	-6.7	-6.7
Total value flows, in \$ millions	-100.0	33.3	33.3	33.3	33.3	33.3

Example

□ Then calculate FV and EV using the financial discount rate of 6% and

social discount rate of 2% respectively

Year	2023	2024	2025	2026	2027	2028
Cash flows, in \$ millions	-100	40	40	40	40	40
Discount factor, 6%	1.00	0.94	0.89	0.84	0.79	0.75
PV (cash flows), in \$ millions	-100.0	37.7	35.6	33.6	31.7	29.9
Financial value, in \$ millions	68.5					
Environmental value flows, in \$ millions	0.0	-6.7	-6.7	-6.7	-6.7	-6.7
Discount factor, 2%	1.00	0.98	0.96	0.94	0.92	0.91
PV (value flows), in \$ millions	0.0	-6.6	-6.5	-6.3	-6.2	-6.1
Environmental value, in \$ millions	-31.7					
Integrated value, in \$ millions	36.8					

 Conclusion: the integrated value is positive, so the project is worth doing!

Material, social and environmental factors

- 8
- □ The value calculation for SV and EV can be done in three steps:
 - 1. Materiality assessment determine important SV and EV factors;
 - 2. Quantification express these factors in their own units Q; and
 - 3. Monetisation express these factors in money with shadow prices SP

Materiality assessment

- Materiality assessments aim to determine which S and E factors are important to consider
- Material topics are those that reflect the company's most significant impacts (positive or negative) on people and environment
- Materiality depends on the specific situation and can differ per industry and country
- A core set of factors which should always be included:
 - Greenhouse gas emissions including carbon emissions
 - Labour practices including discrimination and inclusion
 - Business ethics including corruption and fraud

Material social and environmental factors

Social factors

- Labour practices (e.g. training, discrimination)
- Combatting poverty (e.g.
 underpayment in value chain)
- Interaction with communities (e.g.
 regional economic activity, health & safety, business ethics)

Environmental factors

- Pollution (e.g. carbon emissions, water pollution)
- Use of scarce resources (e.g. scarce materials, land, water)
- Restoration of air, land or water
 (e.g. land restoration, water
 purification)

Quantifying social and environmental impact

- □ Expressing E issues in own units:
 - GHG emissions: expressed in tonnes of CO₂
 - Some issues are easily quantifiable (carbon, nitrogen or freshwater use) whereas others are more difficult to express in a single metric (biodiversity)

Year	2022	2023	2024	2025	2026	2027	2028	2029	2030
CO ₂ -eq. million tons	30	31	22	25	31	30	29	25	20

- □ Expressing S issues in own units:
 - For example, quality of life years added by a medical company

Year	2022	2023	2024	2025	2026	2027	2028	2029	2030
Quality life years added, x 1,000	62	64	67	70	73	75	78	82	99

Attribution of impact

- A challenge is attributing (i.e. distributing) shares of the impact to each of the stakeholders
 - **•** For example, carbon emissions from the usage of combustion engine vehicles can be attributed to:
 - The car manufacturer
 - The oil company selling petrol
 - The user of the vehicle
 - **•** For greenhouse gas (GHG) emissions, Scope 1, 2 and 3 emissions attribute by distinguishing:
 - All direct GHG emissions of an organisation– Scope 1
 - Indirect GHG emissions from consumption of purchased energy Scope 2
 - Other indirect GHG emissions both upstream and downstream of the value chain Scope 3
 - New item (not yet in GHG Protocol) saved emissions Scope 4

100% attribution for Scope 1 + 2

> 50% attribution to primary company for Scope 3

Monetising social and environmental impact

- The monetary value is calculated by multiplying the quantified issues with the shadow price, which is the price to restore the original situation
- Monetising E issues:

Year	2022	2023	2024	2025	2026	2027	2028	2029	2030
CO ₂ -eq. million tons	30	31	22	25	31	30	29	25	20
Shadow carbon price, \$	224	232	240	248	257	266	275	285	295 <
Environmental value flow, \$ billions	-6.7	-7.2	-5.3	-6.2	-8.0	-8.0	-8.0	-7.1	-5.9

The shadow carbon price will increase in the future

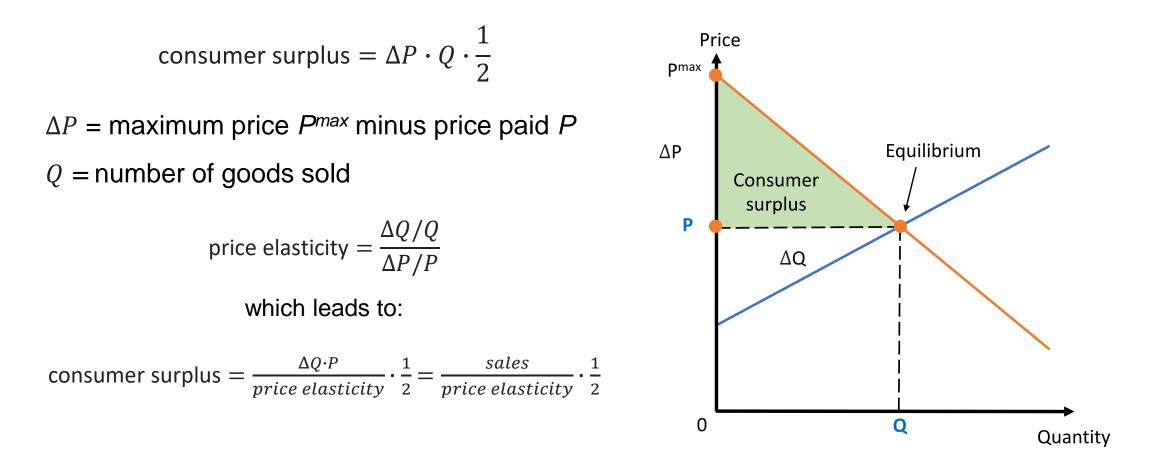
Monetising S issues

Year	2022	2023	2024	2025	2026	2027	2028	2029	2030
Quality life years, x 1,000	62	64	67	70	73	75	78	82	99
Shadow price, x \$1,000	119	119	119	119	119	119	119	119	119 <
Social value flow, \$ billions	7.4	7.6	8.0	8.3	8.7	8.9	9.3	9.8	11.8

The shadow price per quality of life year is expected to stay constant

Welfare-based shadow prices

- The shadow prices should reflect the 'true scarcity' of resources to stay within planetary boundaries
- Organisations such as the Impact Economy Foundation and True Price provide regularly updated lists of impact and shadow prices (see Appendix of Chapter 5)
- □ True prices are based on two welfare categories:
 - Rights (human, labour and environmental rights)
 - Well-being


Well-being

Well-being, also known as quality of life, refers to what is intrinsically valuable for someone

Includes:

- Well-being of employees additional to the salary received, measured by life satisfaction points (on a scale of 0 to 100)
- Well-being of customers calculated as consumer surplus, which is the difference between the price of a product and what consumers want to pay
- Well-being of communities

Consumer surplus

Calculating social and environmental value

17

 Using the social (SVF) and environmental (EVF) value flows, you can determine social (SV) and environmental (EV) value:

$$SV = \sum_{n=0}^{N} \frac{SVF_n}{(1+r)^n}$$

$$EV = \sum_{n=0}^{N} \frac{EVF_n}{(1+r)^n}$$

Year	2022	2023	2024	
Social value flows (SVF), \$ billions	7.4	7.6	8.0	
Discount factor, 2%	1	0.98	0.96	
PV (SVF)	7.4	7.5	7.7	
Social value (SV)	73.3			

Year	2022	2023	2024	
Environmental value flows (EVF), \$ billions	-6.7	-7.2	-5.3	
Discount factor, 2%	1	0.98	0.96	
PV (EVF)	-6.7	-7.0	-5.1	
Environmental value (EV)	-57.6			

- This chapter shows that SV and EV can be measured and valued
 - We can now calculate IV = FV + SV + EV
- Ch 6 and 7 provide examples for projects from Net Present Value (NPV) of FV to Integrated Present Value (IPV)
- □ Ch 7 provides case study for integrated value of Inditex

Conclusions

- Recent advances in impact measurement enable companies to measure social and environmental quantities and to multiply them by their respective shadow price
- The challenge for calculating social value (SV) and environmental value
 (EV) is the availability of company information on S and E issues
- It is important to keep the big picture by focusing on material S and E issues, and not to get lost in unnecessary detail
- Remember: better to be approximately right than exactly wrong