CORPORATE FINANCE FOR LONG-TERM VALUE

Chapter 8: Valuing bonds

The BIG Picture

Corporate bonds are a key financing tool for companies

Traditional valuation

\square Bond investors are more focused on downside protection
\square Government bond yield (benchmark) + spread for credit \& liquidity risk = corporate bond yield

New valuation

- Integrate social and environmental factors into credit risk
- Emergence of green bonds and sustainability-linked bonds

The bond market

\square Bonds are certificates of debt that promise payment of the borrowed amount plus interest by a specified future date

- Bonds are issued by:
- A government
- A company
- A financial institution

Type of securities	Outstanding (in trillions of USD)		
Equity markets	$\mathbf{1 1 2 . 1}$		
- Public equity		105.8	
- Private equity	$\mathbf{1 2 3 . 4}$		
Bond markets		62.8	
- Government bonds	60.6		
- Corporate bonds		17.0	
- Issued by companies		43.6	

Sources: SIFMA (2021); McKinsey (2022); BIS debt securities statistics.

Bond payments

\square A bond certificate indicates the amounts and dates of all payments (principal + interest) to be made
\square The maturity date of the bond is the final repayment date, and the time until the maturity date is the term of the bond

- Two types of payments made on a bond:
- Promised periodic interest payments, called coupons
- Principal / face value of the bond, to be paid at maturity

Types of bonds

- Government / sovereign bonds are issued by national governments (countries)
- Corporate bonds are issued by companies or financial institutions
- Secured bonds contain assets as collateral (i.e. mortgage bonds)
- Unsecured bonds have lower seniority / priority

Bond valuation

\square Bond prices result from discounting promised cash flows

- The price value of a coupon bond P equals the present value of its coupons plus the present value of the face value $F V$ with maturity N

$$
P=\frac{C P N}{\left(1+Y T M_{1}\right)}+\frac{C P N}{\left(1+Y T M_{2}\right)^{2}}+\ldots+\frac{C P N+F V}{\left(1+Y T M_{N}\right)^{N}}
$$

$Y T M=$ the yield to maturity of a zero-coupon bond with the same maturity
$C P N=$ the coupon payment, determined by the annual coupon rate $A C R$ and the number of

$$
\text { coupon payments per year } N r: C P N=\frac{A C R * F V}{N r}
$$

Bond valuation

Example

- Coupon payment (CPN): \$30
- Annual coupon rate $(A C R)$: 6\%
\square Number of coupon payments (Nr): 2

Solution

$$
C P N=\frac{A C R * F V}{N r}=\$ 30=\frac{6 \% * \$ 1,000}{2}
$$

coupon of $\$ 30$ is paid every 6 months
remember face value $(F V)=\$ 1,000$

Bond valuation

- The coupon payments form a stream of equal cash flows paid at regular intervals, this equals an annuity
\square The present value of a bond becomes the sum of the 'coupon annuity' and the face value
\square The yield to maturity (YTM) or yield (y) is the discount rate that sets the present value of payments equal to its current market price
\square Therefore, the price of a bond with maturity N is:

$$
P=C P N * \frac{1}{y}\left(1-\frac{1}{(1+y)^{N}}\right)+\frac{F V}{(1+y)^{N}}
$$

Bond valuation

\square The relationship between bond yields and bond prices is maintained through market forces:

- As interest rates and bond yields rise, bond prices fall
- And vice versa: As bond yields fall, bond prices increase
- This means bonds can trade at:
- A premium - a price greater than face value
- A discount - a price lower than face value
- Par - a price equal to face value \leftarrow this is rare!

Zero-coupon bonds

- The price of a zero-coupon bond is simply the present value of the face value: $P=\frac{F V}{\left(1+Y T M_{N}\right)^{N}}$
\square The yield to maturity of a zero-coupon government bond is used to calculate the risk-free rate

Interest rate changes

\square As interest rates change, bond prices move along with them

- The effect of interest rate changes is larger for bonds with longer terms
- The duration of a bond is the sensitivity of a bond's price to changes in interest rates, and the weighted average of the time-length of cash payments
\square The time-length is the number of future years $n=1,2,3, \ldots$, until maturity N
- Duration $=1 * \frac{P V\left(C F_{1}\right)}{P V}+2 * \frac{P V\left(C F_{2}\right)}{P V}+\cdots+N * \frac{P V\left(C F_{N}\right)}{P V}$
\square The weight for each year is the present value $P V\left(C F_{n}\right)$ divided by the total present value $P V$

Duration

- Calculating the duration of 5\% six-year bond with a YTM of 4\%

| | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | | |
| Year | 1 | 2 | 3 | 4 | 5 | 6 | | |
| Cash flow | $€ 50$ | $€ 50$ | $€ 50$ | $€ 50$ | $€ 50$ | $€ 1,050$ | | |
| Discount factor | 0.962 | 0.925 | 0.889 | 0.855 | 0.822 | 0.790 | | |
| PV $\left(C_{n}\right)$ at 4\% | $€ 48.1$ | $€ 46.2$ | $€ 44.4$ | $€ 42.7$ | $€ 41.1$ | $€ 829.8$ | Total PV $=€ 1,057.7$ | |
| Fraction of total
 value | $\mathbf{0 . 0 4 5}$ | $\mathbf{0 . 0 4 4}$ | $\mathbf{0 . 0 4 2}$ | $\mathbf{0 . 0 4 0}$ | $\mathbf{0 . 0 3 9}$ | $\mathbf{0 . 7 8 5}$ | Total = | $\mathbf{1 . 0}$ |
| Year * fraction of
 total value | $\mathbf{0 . 0 4 5}$ | $\mathbf{0 . 0 8 7}$ | $\mathbf{0 . 1 2 6}$ | $\mathbf{0 . 1 6 2}$ | $\mathbf{0 . 1 9 4}$ | $\mathbf{4 . 7 0 8}$ | Total duration $=$ | $\mathbf{5 . 3}$ |

- Duration (5.3 years) is typically close to maturity (6 years), because of large weight of face value
- Duration is good measure of interest rate risk of bond, where higher duration reflects higher interest rate risk

Term structure of interest rates

- The term structure of interest rates (also called yield curve) is the array of yields on bonds with different terms to maturity
- To derive a 10-year yield curve, you need the YTM $_{n}$ for year 1, 2, $\ldots, 10$
\square The yields can be calculated using the formula for zero-coupon bonds:

$$
P=\frac{F V}{\left(1+Y T M_{n}\right)^{n}}
$$

\square The law of one price can be used to calculate the yields on coupon bonds, since similar products should sell at the same price
\square If they don't sell at the same price, arbitrage makes differences disappear

Government bond yield

Germany Yield Curve - 6 Oct 2022
Germany Government Bonds
3\%

Government bonds are the safest and most liquid bonds
\square serve as benchmark

- risk-free rate

Yields on coupon bonds with the same maturity

	Year (n)				Bond price (P)	Yield (y)
Maturity	1	2	3	4		
Zero-coupon yield	2\%	3\%	4\%	5\%		
Discount factor	0.98	0.94	0.89	0.82		
Bond A (4\% coupon)						
Payment	$€ 40$	$€ 40$	$€ 40$	€ 1,040		
$\mathrm{PV}\left(\mathrm{CF}_{\mathrm{n}}\right)$	€ 39.22	€ 37.70	€ 35.56	€ 855.61	$€ 968.09$	4.90\%
Bond B (6\% coupon)						
Payment	€ 60	$€ 60$	$€ 60$	$€ 1060$		
$\mathrm{PV}\left(\mathrm{CF}_{\mathrm{n}}\right)$	$€ 58.82$	€ 56.56	€ 53.34	€ 872.06	€ 1,040.78	4.85\%
Bond C (0\% coupon)						
Payment	$€ 0$	$€ 0$	$€ 0$	€ 1,000		
$\mathrm{PV}\left(\mathrm{CF}_{\mathrm{n}}\right)$	€ 0	€ 0	€ 0	€ 822.70	€ 822.70	5.00\%

Bonds differ in terms of coupon rate, but have the same maturity

Yields on coupon bonds with different maturities

	Year (n)				Bond price (P)	Yield (y)
Maturity	1	2	3	4		
Zero-coupon yield	2\%	3\%	4\%	5\%		
Discount factor	0.98	0.94	0.89	0.82		
Bond D (6\% coupon)						
Payment	$€ 60$	€ 1,060				
PV(CF ${ }_{n}$)	€ 58.82	€ 999.15			€ 1,057.98	2.97\%
Bond E (6\% coupon)						
Payment	$€ 60$	$€ 60$	€ 1060			
$\mathrm{PV}\left(\mathrm{CF}_{\mathrm{n}}\right)$	€ 58.82	€ 56.56	€ 942.34		€ 1,057.72	3.92\%
Bond F (6\% coupon)						
Payment	$€ 60$	$€ 60$	$€ 60$	$€ 1060$		
$\mathrm{PV}\left(\mathrm{CF}_{\mathrm{n}}\right)$	€ 58.82	€ 56.56	€ 53.34	€ 872.06	€ 1,040.78	4.85\%

Bonds have the same coupon rate, but differ in terms of maturity

Term structure

\square Since bonds with higher duration carry more interest rate risk, the yield curve is typically upward sloping
\square This leads to a positive term spread, which is the spread of yields for bonds with longer maturity over bonds with shorter maturity
\square This has several explanations:

- The belief that short-term rates will be higher in the future
- Higher exposure of longer-term bonds to changes in interest rates
- Risk of higher inflation in the future

Inflation

\square Inflation, $i_{i, t}=\frac{\left(C P I_{i, t}-C P I_{i, t-1}\right)}{C P I_{i, t-1}}$, is the realised consumer price index (CPI) inflation rate given country i in year t
\square The real rate of return r_{r} is calculated as $r_{r}=\frac{1+r}{1+i}-1$
\square We can use the approximation for real interest rates in the form of nominal return minus inflation $r_{r} \approx r-i$ in low inflation countries

- For high inflation countries, use the full formula, since larger numbers result in larger deviations

Drivers of yields on government bonds

\square Cantor and Packer (1996) find that sovereign borrowing costs can be explained by:

- Per capita income
- External debt
- GDP growth
- Inflation
- Level of economic development
- Default history
- Government bonds are typically bought by institutional investors seeking a relatively safe investment
\square Financial contagion is the spread of market disturbances from one market or country to other markets or countries
- Example: European Sovereign Debt Crisis, originating from Greece in 2009

Government bond yields as risk-free rates

- The German bond yield is most creditworthy and can be used as the Euro's risk-free rate

\square U.S. government bonds (also called Treasuries) serve as the risk-free rate for the US dollar

Drivers of yields on corporate bonds

\square Compared to government bonds, corporate bonds tend to carry more serious default and liquidity risks

- Due to lower trading frequencies, higher transaction costs and smaller sizes
- Due to the risk of default, the bond's expected return (equal to the firm's cost of capital) is less than the yield to maturity YTM

Drivers of yields on corporate bonds

\square The yield spread is the difference between yields of corporate bonds and yields of government bonds
\square The higher the default risk, the larger the spread

Maturity	$\mathbf{1}$ year	5 year	10 year	20 year
AAA corporate bonds	4.39%	4.30%	4.39%	4.61%
A corporate bonds	4.68%	4.66%	4.92%	5.26%
AAA Treasuries	4.07%	3.85%	3.65%	4.04%
AAA corporate yield spread	$\mathbf{0 . 3 1 \%}$	$\mathbf{0 . 4 5 \%}$	$\mathbf{0 . 7 5 \%}$	$\mathbf{0 . 5 7 \%}$
A corporate yield spread	$\mathbf{0 . 6 1 \%}$	$\mathbf{0 . 8 1 \%}$	$\mathbf{1 . 2 8 \%}$	$\mathbf{1 . 2 2 \%}$

[^0]
Credit risk

\square Credit risk refers to the risk of default of the entity issuing a bond
\square The expected return on a bond is different from the promised return, as some issuers default on their bond
\square The expected return on debt r_{D} is

$$
E[y]=(1-P D) \cdot y+P D \cdot(y-L G D)=y-P D \cdot L G D=r_{D}
$$

$P D=$ the probability of default
$L G D=$ loss given default (the fraction of the principal and interest lost in case of default)

Credit risk - example

\square The expected return on debt r_{D} is

$$
E[y]=(1-P D) \cdot y+P D \cdot(y-L G D)=y-P D \cdot L G D=r_{D}
$$

- Example: assume a promised yield y of 6%, a probability of default $P D$ of 4% and a loss given default LGD of 60\%
\square What is the expected return on debt r_{D} ?
\square Answer: $r_{D}=y-P D \cdot L G D=6 \%-4 \% * 0.60=3.6 \%$

Credit risk

\square The expected credit losses $E C L$ are calculated by:

$$
E C L=E A D \cdot P D \cdot L G D
$$

$E A D=$ exposure at default

- The credit risk premium CRP is the investor's reward for risk taking, and is the difference between the expected return on a bond $E[y]$ and the risk-free rate r_{f} :

$$
C R P=E[y]-r_{f}
$$

Yield, credit and liquidity spreads

Yield spread is difference between promised yield and risk-free (government) yield

- The liquidity spread covers:
- The expected liquidity costs
- The liquidity risk premium
- The credit spread covers:
- The expected credit losses $E C L$
- The credit risk premium $C R P$

Corporate bond yield

Be very precise on credit definitions

To recap on credit (ignoring liquidity spread)

- The credit spread covers:
- Expected credit losses reflects promised yield minus expected yield: $E C L=y-E[y]$
- Credit risk premium is reward for risk-taking:

$$
C R P=E[y]-r_{f}
$$

- Check: credit spread is $E C L+C R P$->
$y-E[y]+E[y]-r_{f} \quad->\quad y-r_{f}$
promised yield - risk free rate

Corporate bond yield

Example

Example

- One-year corporate bond with yield 7.5%, risk of default 4\%, loss given default 60\%
- Calculate expected credit losses and credit risk premium, given government bond yields 3\%

Solution:

1. Expected yield: $E[y]=r_{D}=7.5 \%-4 \% * 0.60=5.1 \%$
2. Expected credit losses: $E C L=y-E[y]=7.5 \%-5.1 \%=2.4 \%$
3. Credit risk premium : $C R P=E[y]-r_{f}=5.1 \%-3 \%=2.1 \%$
4. Check: credit spread is difference between corporate yield (7.5\%) and government yield (3\%)
-> ECL + CRP -> $2.4 \%+2.1 \%=4.5 \%$

Corporate bonds during times of crises

\square During crises, credit spreads can jump due to higher (perceived) risk of default and/or investor's 'flight to safety'

- During the 2009 global financial crisis, spreads increased considerably:

Source: Bloomberg

Credit ratings

Rating agency	Moody's	Standard \& Poor's and Fitch	Long-term average default rate
Type of bonds	Investment grade bonds		
	Aaa	AAA	0.00\%
	Aa	AA	0.02\%
	A	A	0.05\%
	Baa	BBB	0.16\%
Type of bonds	Junk	eld bonds	
	Ba	BB	0.61\%
	B	B	3.33\%
	Caa	CCC	\square
	Ca	CC	- 27.08\%
	C	C	\checkmark

Agency costs

\square Owning the equity of a company is like having the right to buy the company (an option) paying the face value of debt to the bondholders

- The more debt there is, the riskier that right becomes (Merton, 1974)
- A benefit for bondholders is that they get paid back first in case of default
- Equity holders benefit from volatility (risk), while bondholders suffer from volatility or uncertainty
- Myers' (1977) 'debt overhang' problem: if management is aligned with equity holders, it will only attract new capital for projects with high enough returns to leave a residual return for shareholders as well

Liquidity risk

\square Bonds also face liquidity risk, which is the risk that bonds cannot be sold swiftly
\square Liquidity is the ease with which an investor can sell or buy a bond
\square The liquidity spread is the spread between the yield of a bond with high liquidity and a similar bond with less liquidity
\square The higher liquidity risk of corporate bonds stems from lower trading frequencies and higher transaction costs

Integrating sustainability into bond valuation

- Sustainability issues include value relevant issues (inefficiencies) that are not yet properly priced
- Compared to equity, the focus in fixed income valuation is much more on risk than on opportunities
- Environmental and social exposures can have effects on performance by generating risks that may materialise in future scenarios
- Volkswagen credit default swap (CDS) spread went from 75.5 basis points (bp) to 299.5 after Dieselgate scandal in 2015
- Russian CDS spread went from 200-300bp to 600bp after seizing Crimea from Ukraine in 2014, while Ukrainian CDS spread rose to over 5,000bp

From sustainability to credit risk

- Climate change
- Biodiversity
- Energy management
- Pollution
- Human rights
- Health \& safety
- Gender gap
- Etc.
- Cash reserves
- Profitability
- Productivity
- Competitive advantage
- Cost of capital
- Leverage
- Intangibles
- Etc.
- Credit ratings
- CDS spreads
- Bond yields and prices
- Volatility
- Default probability
- Breach of covenants
- Etc.

Integrating sustainability into bond valuation

\square Credit risk assessment models estimate the probability of default $P D$ and the loss given default $L G D$ on the basis of historical data at industry and company level

- Integrating sustainability is challenging due to its forward-looking nature
\square Factors to include in credit risk analysis:
- The prospect of internalisation of social and environmental factors - companies that internalise factors can reduce credit risk
- The company's capability to adapt to a sustainable world - adaptable companies have a reduced probability of default and loss given default

Altman Z-score

- The Altman Z-score is a simple method to incorporate sustainability into credit risk assessment (Altman, 2018)
- Based on four factors:

1. Working capital: $x_{1}=\frac{\text { current assets }- \text { current liabilities }}{\text { total assets }}$
2. Retained earnings: $x_{2}=\frac{\text { retained earnings }}{\text { total assets }}$
3. EBIT: $x_{3}=\frac{\text { earnings before interest and taxes }}{\text { total assets }}$
4. Equity: $x_{4}=\frac{\text { book value of equity }}{\text { total liabilities }}$

Estimate the impact of sustainability on these four factors

Altman Z-score

\square Z-score formula:

$$
Z=3.25+6.56 \cdot x_{1}+3.26 \cdot x_{2}+6.72 \cdot x_{3}+1.05 \cdot x_{4}
$$

\square The zones of discrimination:

- Safe zone: $Z>5.85$ - company does not go bankrupt
- Grey zone: $4.35<Z<5.85$ - company is at risk of bankruptcy
- Distress zone: $Z<4.35$ - company are (or will be) bankrupt

Evonik's Z-score

Problem

In 2020, Evonik, a German specialty chemicals company with a large focus on sustainability, had the following current and projected future profile:

Factor	2020	2021	2022
Working capital	0.10	0.11	0.11
Retained earnings	0.33	0.40	0.43
EBIT	0.04	0.07	0.07
Equity	0.39	0.39	0.39

What is the impact of Evonik's sustainability strategy on its default risk?

Evonik's Z-score

Solution $\quad Z-$ score $=3.25+6.56 \cdot x_{1}+3.26 \cdot x_{2}+6.72 \cdot x_{3}+1.05 \cdot x_{4}$

Factor	Weight	2020	2021	2022
Constant	1.00	3.25	3.25	3.25
Working capital	6.56	0.10	0.11	0.11
Retained earnings	3.26	0.33	0.40	0.43
EBIT	6.72	0.04	0.07	0.07
Equity	1.05	0.39	0.39	0.39
Z-score		$\mathbf{5 . 6 6}$	$\mathbf{6 . 1 6}$	$\mathbf{6 . 2 5}$

Safe zone: $Z>5.85$
Grey zone: $4.35<Z<5.85$
Distress zone: $Z<4.35$

Evonik's Z-score of 5.66 in 2020 indicates the company is in the grey zone
The improvement in 2021 and 2022 means Evonik moves to the safe zone

Integrated value calculation

- Graph shows IV and its components: FV, EV, SV
\square High debt and negative values of S and E raise risk of both debt and equity
$\square S$ and E factors can be internalised and spill over into financial value

Case-studies integrated value calculation

Case-studies integrated value

- Ch6-7 - project valuation
- Ch11 - company valuation Inditex
- Make DCF for enterprise value FV
- Make DCF for SV + EV
- Integrate numbers

Inditex IV calculation	Value (Euro billions)
FV (enterprise value)	79
Positive SV	283
Negative SV	-137
Negative EV	-183
IV (integrated value)	42

- Ch18 - attempted take-over of Unilever by Kraft Heinz

Green bonds

- The purpose of green bonds is to finance environmentally friendly (green) projects
- The green bond market has grown exponentially, reaching a global annual issuance of \$520 billion in 2021
- Issuers include:
- Supranationals (i.e., World Bank, IMF, EIB)
- Agencies
- Governments
- Municipalities
- Corporates
- Financial institutions

Market value of issuance per year, US\$ billions

Green bonds

- Criteria for green bonds, as set out by ICMA (2021):

1. Use of proceeds: proceeds are exclusively for green projects, which should be appropriately described in the legal documentation accompanying the security
2. Process of project evaluation and selection: the issuer should clearly communicate to investors:

- What the environmental objectives are
- The process by which the issuer determines how the project fits within eligible green project categories
- The related eligibility criteria

3. Management of proceeds: the net proceeds of the green bond should be credited to a subaccount, and subsequently tracked and verified
4. Reporting: mandatory reporting on the use of the proceeds

EU Taxonomy for sustainable activities

- The EU Green Bond Standard specifies that green products should contribute to at least one of six environmental objectives:

1. Climate change mitigation
2. Climate change adaptation
3. Sustainable use and protection of water and marine resources
4. Transition to a circular economy
5. Pollution prevention and control
6. Protection and restoration of biodiversity and ecosystems
\square A green project should not undermine any of the objectives

- The EU Green Bond Standard also requires verification of the allocation of the proceeds to green projects by an external party

Green bonds

\square Sustainable investors are prepared to pay a green bond premium, resulting in a lower yield - known as the 'clientele effect'
\square Green bond premium is the difference in yield between green bonds and perfectly matched reference bonds
\square Green bond premium typically ranges from 0 to 20bp and averages around 5bp
\square Benefits for issuers is partly offset by higher issuing and reporting costs, also estimated around 5bp per year
> Green bonds is more about signaling greenness, than saving on borrowing costs

Social bonds

\square Social bonds need to provide clear social benefits

- They are a payment by results contract where an organization (with a social purpose) agrees to deliver outcome on a social project
- If the objectives are not reached, investors do not receive a return nor repayment of the principal
- Social project categories include, but are not limited to:
- Affordable basic infrastructure
- Access to essential services
- Affordable housing
- Employment generation
- Food security
- Socioeconomic advancement
- Empowerment

Sustainability-linked bonds

- Sustainability-linked bonds can be used for the issuer's general purposes
- They incorporate forward-looking sustainability key performance indicators (KPIs) and sustainable performance targets -> expected to be way forward
- Improvement in KPIs leads to lower interest rate payments (i.e. a lower yield)

Label	Format
Green bonds	Use of proceeds
Social bonds	Use of proceeds
Sustainability bonds	Use of proceeds
Sustainability-linked bonds	Entity KPI-linked

Conclusions

\square The pricing of bonds is relevant for corporate finance for two reasons:

- The yield on government bonds serves as the risk-free rate
- Companies issue bonds to finance their operations
\square Bond markets are bigger than stock markets, with institutional investors typically holding more bonds than equity
- Companies that can better adapt their business model face a lower credit risk
\square There is innovation in the form of green bonds and social bonds to cater for sustainable investment projects of governments and companies

[^0]: Source: Bloomberg, as per November 2022

