CORPORATE FINANCE FOR LONG-TERM VALUE

Chapter 9: Valuing public equity

Chapter 9: Valuing public equity

The BIG Picture

\square Company valuation is at the core of corporate finance
\square Listed companies are traded (and valued) in financial markets

Different methods

\square While relative valuation methods rely on market metrics and efficient markets, absolute valuation brings a deeper (fundamental) understanding of companies

- Key is to assess a company's value drivers
- Fundamental methods are most suited for integrating S \& E factors into equity valuation

The public equity (or stock) market

- Global stock markets reached a market capitalisation of $\$ 106$ trillion in 2021, which is about 125% of global GDP
\square The joint stock company allows for the spreading of risk across many shareholders with residual claims and limited liability
\square Classification of investment types:
- Active investing: based on fundamental or quantitative analysis of the company
- Passive investing: through indices or ETFs (Exchange Traded Funds)

Allocation role

\square Trading in stock markets facilitates price discovery

Puzzle of passive vs active investing

- Passive investing limits cost of analysis and trading (active investing adds 70bps), but also limits scope for societal allocation role of finance
- You need a minimum amount of active traders to get news into stock market prices (the so-called process of price discovery)
- What is appropriate balance between passive and active investing?

Stock markets

- Primary stock markets
- New issues of stock are issued to investors
- A firm's initial public offering (IPO) is their first listing on a stock exchange
- Secondary stock markets
- Previously traded equities are traded again
- If a firm sells new stock on an exchange, this is called a seasoned equity offering (SEO) or secondary public offering (SPO)

Initial Public Offerings (IPOs)

- Motives for IPOs:
- To obtain funds to finance investments
- Increased financial autonomy due to becoming less dependent on a single financial provider
- Diversifies investment risk of owners
- Increased recognition of company name
- Better information and transparency due to disclosure requirements
- Stock acts as disciplining mechanism for managers
- Disadvantages of IPOs:
- Expensive procedure due to underwriters' commission, legal fees, etc.
- Creates a larger gap between external investors and managers, which could lead to more agency problems
- Increased exposure to scrutiny of shareholders focused on short-term gain

Equity valuation

Abbreviations
$V \quad$ Value
FCF Free cash flow
WACC Weighted average cost of capital
$P \quad$ Stock price
EPS Earnings per share
$E \quad$ Earnings

Equity valuation

- Absolute valuation methods
- Based on the company's cash flows, which are forecasted and then discounted at company's discount rate
- Three main value drivers
- Sales, which are composed into volumes and price
- Margins, which are analysed by type of costs and before or after depreciation, taxes and interest paid (EBIT)
- Capital, which is split into the cost of capital (discount rate) and the uses of capital (capex, working capital)
\square Question - what is more important for valuation - cash flows or discount rate?
- Academics - discount rate (capital)
- Practitioners - cash flows (sales and margins)

Enterprise value

\square The enterprise value is the market value of the company's underlying business before financing by equity and debt, and separate from any cash

$$
V_{0}=\text { Equity }_{0}+\text { Debt }_{0}-\text { Cash }_{0}
$$

- It provides a comprehensive overview of the company's business activities, which helps to focus on a company's long-term value
\square It highlights which activities contribute and negatively impact a company's future value, which can aid the company in its strategy setting

Dividend-discount model

- The dividend discount-model looks at cash flows to equity investors
- First, the cash flow of the dividend received
- Second, the cash flow from the sale of the stock at a future date
- Equation for stock price: $P_{0}=\frac{\operatorname{Div_{1}}+P_{1}}{1+r_{E}}$, where:
- $D i v_{1}$ is the net present value of dividends received during the year
- $\quad P_{1}$ is the stock price at the end of the year
- r_{E} is the cost of equity, which is the expected return of other investments in the market with similar risks

Dividend yield

\square Rewriting the formula: $r_{E}=\frac{D i v_{1}+P_{1}}{P_{0}}-1=\frac{D i v_{1}}{P_{0}}+\frac{P_{1}-P_{0}}{P_{0}} \leftarrow$ Capital gain

Multi-year dividend-discount model

\square The stock price is equal to the present value of the expected dividends
\square Assuming a constant dividend growth g, we get the following:

$$
P_{0}=\frac{\operatorname{Div}_{1}}{\left(1+r_{E}\right)}+\frac{D i v_{1} \cdot(1+g)}{\left(1+r_{E}\right)^{2}}+\frac{D i v_{1} \cdot(1+g)^{2}}{\left(1+r_{E}\right)^{3}}+\cdots=\sum_{n=1}^{\infty} \frac{\operatorname{Div_{1}} \cdot(1+g)^{n-1}}{\left(1+r_{E}\right)^{n}}
$$

\square If an investor receives growing dividends into perpetuity, the equation becomes:

$$
P_{0}=\frac{D i v_{1}}{r_{E}-g} \longleftarrow \quad \begin{gathered}
\text { Constant dividend } \\
\text { growth model }
\end{gathered}
$$

Dividend payout ratio

\square The actual dividend depends on the payout ratio:

$$
\text { Div }_{t}=\frac{\text { Earnings }_{t}}{\text { Shares outstanding }_{t}} \times \text { dividend payout ratio }_{t}=E P S_{t} \times \text { dividend payout ratio }_{t}
$$

$E P S_{t}=$ earnings per share

- An updated dividend-growth model includes share repurchases

$$
P_{0}=\frac{P V(\text { total dividends and share repurchases })}{\text { Shares outstanding }} 0
$$

- Share repurchases are exempt of dividend tax, and are thus an efficient way of rewarding shareholders
- The equity value is the present value of total dividends and share repurchases

$$
\text { Equity }_{0}=P V \text { (total dividends and share repurchases) }
$$

The discounted cash flow (DCF) model

\square The DCF model values a company's assets based on their discounted future cash flows
\square The starting point is the earnings before interest and taxes EBIT
\square The company must pay corporate tax τ on these earnings
\square Deduct net investment (CAPEX - depreciation) and increases in net working capital $N W C$
\square The free cash flow FCF of the company is:

$$
F C F=E B I T \times(1-\text { tax rate })-C A P E X+\text { depreciation }- \text { increases in } N W C
$$

Free cash flows (FCF)

\square Free cash flows are to be distributed to financiers after all positive NPV investments have been done
\square Use FCF instead of earnings, since earnings can be easily manipulated (i.e. through accruals and depreciation)
\square Accruals are differences between net earnings and operational cash flow, where cash has not changed hands

- A company can increase depreciation to reduce (taxable) profits or decrease depreciation to show higher book profits to investors

Weighted average cost of capital

\square The free cash flows can be discounted to obtain the enterprise /
company value V_{0} at $t=0$:

$$
V_{0}=\frac{F C F_{1}}{(1+W A C C)}+\frac{F C F_{2}}{(1+W A C C)^{2}}+\ldots+\frac{F C F_{N}+T V_{N}}{(1+W A C C)^{N}}
$$

- WACC is the weighted average cost of capital, which is the rate of return demanded by the company's financiers (of both equity and debt)
\square In the case of constant growth g:

$$
V_{0}=\frac{F C F_{1}}{W A C C-g} \quad \underset{\begin{array}{c}
\text { Same formula used to } \\
\text { determine the terminal value }
\end{array}}{ } T V_{N}=\frac{F C F_{N+1}}{W A C C-g}
$$

Assumptions in the DCF model

- A DCF valuation crucially relies on assumptions to be made on future FCF and on the cost of capital WACC
- Behavioural problem: analysts often extrapolate historical numbers into infinity
\square Having determined a company's enterprise value V_{0}, the stock price P_{0} can be determined as follows:

$$
P_{0}=\frac{V_{0}-\text { Debt }_{0}+\text { Cash }_{0}}{\text { Shares outstanding }}=\frac{\text { Equity }_{0}}{\text { Shares outstanding }}
$$

DCF example

NOPLAT = net operating profit less adjusted taxes

$$
\text { Net debt } 1328
$$

$$
\text { ROIC }=\frac{N O P L A T}{\text { CAPEX }- \text { depreciation }+N W C}
$$

	WACC	8\%		TV growth	2\%								
	FY2019	FY 2020	FY 2021	FY 2022	2023e	2024e	2025e	2026e	2027e	2028e	2029e	2030e	2031e
Sales growth	6\%	11\%	6\%	7\%	6\%	6\%	6\%	6\%	6\%	6\%	6\%	6\%	2\%
EBIT margin	11\%	12\%	12\%	12\%	12\%	12\%	12\%	12\%	12\%	12\%	12\%	12\%	12\%
Tax rate	20\%	21\%	30\%	29\%	28\%	28\%	28\%	28\%	28\%	28\%	28\%	28\%	28\%
Depreciation/sales	6\%	5\%	5\%	5\%	5\%	5\%	5\%	5\%	5\%	5\%	5\%	5\%	5\%
CAPEX/sales	6\%	6\%	6\%	6\%	6\%	6\%	6\%	6\%	6\%	6\%	6\%	6\%	5\%
NWC/sales	9\%	9\%	9\%	8\%	8\%	8\%	8\%	8\%	8\%	8\%	8\%	8\%	8\%
Sales	6233	6910	7348	7856	8327	8827	9357	9918	10513	11144	11813	12521	12772
EBIT	691	807	906	937	993	1053	1116	1183	1254	1329	1409	1493	1523
Taxes on EBIT	138	172	276	269	278	295	312	331	351	372	394	418	427
NOPLAT	553	635	630	668	715	758	804	852	903	957	1014	1075	1097
Depreciation	361	377	352	405	416	441	468	496	526	557	591	626	639
Gross CF	914	1012	982	1073	1131	1199	1271	1348	1428	1514	1605	1701	1735
CAPEX	399	430	458	472	500	530	561	595	631	669	709	751	639
increase in NWC	37	33	32	28	40	42	44	47	50	53	56	59	21
Gross investment	436	463	490	500	539	572	606	642	681	722	765	811	660
FCF	478	549	492	573	592	628	666	705	748	793	840	891	1076
Terminal Value (TV) 17930													
				od, in years	1	2	3	4	5	6	7	8	8
				ount Factor	0.926	0.858	0.794	0.735	0.681	0.630	0.583	0.540	0.540
Sum of Present Values: Enterprise Value (V)					549	538	528	519	509	499	490	481	9685
					13798							TV/N	70\%

$$
\begin{array}{rc}
\text { Net debt } & 1328 \\
\hline \text { Equity value } & \mathbf{1 2 4 7 0}
\end{array}
$$

invested capital

DCF equity valuation - changed EBIT (previously 12\%)

Sensitivity analysis

\square A sensitivity analysis shows that 'under reasonable assumptions' the stock price can fluctuate between a range

- Using DCF, Adidas' stock price is €301.20 (based on 9% growth + 13\% EBIT)
- In the table below, assuming a ranging sales growth between 7% and 11% and EBIT margin between 11% and 15%, Adidas' stock price can 'reasonably' fluctuate between
$€ 227.60$ and $€ 385.50$

			Sales growth			
		7%	8%	9%	10%	11%
	11%	227.6	238.9	250.7	262.8	275.4
	12%	250.7	263.1	275.9	289.2	302.9
EBIT	13%	273.9	278.3	301.2	315.5	330.4
margin	14%	297.1	311.5	326.4	341.9	357.9
	15%	320.2	335.7	351.7	368.3	385.5

Comparing absolute valuation methods

Present value of ...	Determines the ...	Value
Dividend payments per share	Stock price	P_{0}
Total payouts (total dividends and share repurchases)	Equity value	Equity y_{0}
Free cash flow		
(cash available to equity and debt holders)		

Equity value multiples

- In relative (or multiples) valuation, a stock value P_{0} is derived from the given value of another comparable stock

$$
\begin{aligned}
& P_{0}=E P S_{0} * \frac{P}{E} \longleftarrow \underset{\text { P/E ratio }}{\uparrow} \begin{array}{l}
\text { Peer group's } \\
\text { Company's EPS }
\end{array}
\end{aligned}
$$

- A disadvantage of using the P/E ratio is that a company's current earnings can be distorted \rightarrow use forward P/E ratio instead, which are the expected earnings over the next year
- Other method is the market price to book value ratio P / B, although this ratio fluctuates considerably making it imprecise and less reliable compared to P/E

Enterprise value multiples

- To compare companies with different leverage, multiples can be based on a company's enterprise value V, as this is the value before financing
- Indicator of earnings before payment to financiers: EBIT (Earnings Before Interest and Taxes)
\square Indicator of earnings before payment to financiers and investments: EBITDA (Earnings Before Interest, Taxes, Depreciation and Amortization)
\square Enterprise value V_{0} multiples formula: $\underset{\substack{\text { Company's EBITDA }}}{V_{0}} \underset{\substack{\text { EBITDA }}}{E \operatorname{CITD} A_{0}} * \frac{V}{\substack{\text { Peer group's enterprise } \\ \text { value } / \text { EBITDA }}}$

Integrating sustainability into value drivers

\square Adjusting value drivers on material sustainability issues allows for integration of sustainability into enterprise valuation
\square The value-driver adjustment provides the inward perspective on sustainability and is financially driven

Value driver adjustment (VDA) approach

■ Schramade’s (2016) Value Driver Adjustment (VDA) approach splits enterprise valuation into value drivers:

- Sales, composed into volumes and price
- Margins, analysed by type of costs and before or after depreciation, taxes, and interest paid
- Capital, split into the cost of capital (discount rate) and the uses of capital (capex, working capital)
\square VDA approach highlights the company's sources of competitive advantage

Value driver adjustment (VDA) approach

- Three-step approach:

1. Identify and focus on the most material issues

- Perform materiality analysis of the industry
- Plotting likelihood of impact of each issue against its likely size

2. Analyse the impact of these material factors on the individual company

- Assess company performance on material sustainability issues, both on absolute basis and relative to peers

3. Quantify competitive advantages to adjust for value driver assumptions

- Make deliberate adjustments to value drivers based on company's competitive (dis)advantages on material sustainability issues

Example VDA approach for medical company

\square Medical company assessed by analyst

- Material issues: for industry - innovation, human capital, energy, circular economy
- Performance: medtech's strengths - innovation, human capital \& capital management
- Value driver adjustments: sales +100bps; margins +200bps; capital 0bps (see table)
- Net result: increase in target stock price from €39.3 to €48.1 (see table)

Value driver	Sales growth	Margins	Cost of capital	Target price
Benchmark (performance excluding sustainability advantage)	4%	13%	8%	€39.3
Impact from sustainability factors	Innovation: $+100 b p s$	Innovation and circularity/energy savings: +200bps	No impact: Obps	€8.8 (22\% higher value)
Total	5%	15%	8%	€48.1

Examples of value drivers

Novozymes
Mining company

Integrated value calculation

- Graph shows IV and its components: FV, EV, SV
- Negative values of S and E raise risk of both debt and equity
$\square S$ and E factors can be internalised and spill over into financial value

Integrated value		
FV: enterprise value	EV	SV
Equity	Debt	Components of E xtheir price

Case-studies integrated value calculation

Case-studies integrated value

- Ch6-7 - project valuation
- Ch11 - company valuation Inditex
- Make DCF for enterprise value FV
- Make DCF for SV + EV
- Integrate numbers

Inditex IV calculation	Value (Euro billions)
FV (enterprise value)	79
Positive SV	283
Negative SV	-137
Negative EV	-183
IV (integrated value)	42

- Ch18 - attempted take-over of Unilever by Kraft Heinz

Conclusions

\square To obtain a company's value, equity valuations either:

- Look at a company's 'fundamentals' using absolute valuation models (e.g. DCF)
\square Compare a company to a similar company using relative valuation models (e.g. P/E ratio)
\square As residual claimholders, equity investors have strong incentives to help companies achieve the conditions for integrated value creation
- Fundamental valuation methods - through a deeper understanding of a company's value drivers - are most suited to sustainability integration

