PRINCIPLES OF SUSTAINABLE FINANCE

Chapter 11: Insurance – managing long-term risk

Overview of the book

Part I: What is sustainability and why does it matter?

 Sustainability and the transition challenge

Part II: Sustainability's challenges to corporates

- 2. Externalities internalisation
- 3. Governance and behaviour
- 4. Coalitions for sustainable finance
- 5. Strategy and intangibles changing business models
- 6. Integrated reporting metrics and data

Part III: Financing sustainability

- 7. Investing for long-term value creation
- 8. Equity investing with an ownership stake
- 9. Bonds investing without voting power
- 10. Banks new forms of lending
- 11. Insurance managing long-term risk

Part IV: Epilogue

Transition management and integrated thinking

Learning objectives – chapter 11

- explain the nature of insurance business
- identify the physical risk of catastrophes
- appreciate the liability risk for environmental hazards
- understand the basics of catastrophe modelling
- explain the function of micro-insurance

Insurance and catastrophe risk

Large claims: catastrophes

Catastrophes: the most costly insurance losses

Insured loss (in \$ billion)		Date (year)	Event	Country
82.4	1,836	2005	Hurricane Katrina: storm surge, floods	US, Mexico
38.1	18,451	2011	Earthquake (Mw 9.0) triggers tsunami	Japan
32.0	136	2017	Hurricane Maria	US, Puerto Rico, Caribbean
30.8	237	2012	Hurricane Sandy: storm surge	US (New York)
30.0	126	2017	Hurricane Irma	US, Puerto Rico, Caribbean
30.0	89	2017	Hurricane Harvey	US
27.9	65	1992	Hurricane Andrew: floods	US, Bahamas
26.0	2,982	2001	Terror attack on WTC, Pentagon	US
25.3	61	1994	Northridge earthquake (Mw 6.7)	US
23.1	193	2008	Hurricane Ike: floods, damage to oil rigs	US, Caribbean
19.1	185	2011	Earthquake (Mw 6.1), aftershocks	New Zealand
16.8	119	2004	Hurricane Ivan: damage to oil rigs	US, Caribbean
16.3	815	2011	Heavy monsoon rains: extreme flooding	Thailand
15.8	53	2005	Hurricane Wilma: torrential rains, floods	US, Mexico
13.5	34	2005	Hurricane Rita: floods, damage to oil rigs	US, Mexico
11.7	123	2012	Drought in the Corn Belt	US

Insured catastrophe losses are rising

How to share risk of catastrophe?

Why does sustainability matter to insurance?

AXA's materiality matrix

Swiss Re's climate change policy

Advancing its understanding of climate change risks, quantifying and integrating it into its risk management and underwriting frameworks Developing products and services to mitigate or adapt to climate risk Raising awareness about climate change risks through public dialogue, and advocating a worldwide policy framework for climate change Tackling its own carbon footprint and ensuring transparent, annual emissions reporting

Sustainability scores of Allianz (by RobecoSAM)

Managing long-term catastrophe risk

Catastrophe model

- 1. The **hazard component** estimates the extent and intensity of the natural catastrophe
 - 2. The **vulnerability component** assesses the relative damage to the assets (like property and infrastructure)
 - 3. The **exposure component** is split between building values, contents values and business interruption values
 - 4. The **financial loss component** translates the physical damage into total monetary loss before the application of insurance
 - 5. The **platform component** integrates the four model components

Global Warming, at a Glance

The increase of greenhouse gases — mainly from the burning of fossil fuels — is trapping more heat in Earth's systems, what's commonly known as global warming. This extra heat has resulted in higher temperatures on land and the oceans, melting ice and more extreme weather.

Most of that radiated

heat is absorbed by

greenhouse gas

molecules, warming

lower atmosphere

Solar radiation passes through

the atmosphere to the Earth

UPPER ATMOSPHERE

HEAT BLANKET

LOWER ATMOSPHERE

Earth's surface and the

CO2 and other greenhouse gases released by the burning of fossil fuels thicken the atmospheric heat blanket, trapping more heat on Earth

About half of this solar radiation is absorbed by the Earth — mostly by the oceans

Not to scale

Climate change intensifies natural hazards

Projections by the IPCC

Sea-level rise

Increase of frequency of present 100-year events with rising sea levels

Mitigation and adaptation

Mitigating strategies

- Reducing carbon emissions very important to reduce climate change
- But even if global temperature stabilised, sea-level will rise as the deep ocean warms slowly

Adaptation to minimise disruptions

- Insurance provides financial risk transfer, but not against physical impact
- Also disaster risk reduction measures: early warning, education, etc.

Low and middle-income countries more affected by adverse weather events

- Global climate risk pool to help these countries at macro level
- But can only insure extreme events that strongly exceed trend line

Climate risk pool for annual storm-surge

Micro-insurance

Conclusions

- Insurers play key role in managing catastrophe risk
 - Mitigation to reduce emissions
 - Adaption to deal with natural hazards
 - And managing liability risks
- Long-term impact of climate change is uncertain
 - Catastrophe models to capture LT trends of natural hazards
 - Projected sea-level rise increases, for example, flooding of coastal areas
- Micro-insurance can protect low-income individuals against shocks