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Abstract
Today’s customer expects every item to be on stock, personalizeable, shipped within hours
and if possible delivered for free. At the same time, the internet has made products and
services comparable and allows individuals and companies to shop on a transparent market. To
accommodate these demands, warehouses increase floor space, their assortments, broaden their
service offering and rely increasingly on technology to improve delivery performance. Among
all this change, what constitutes efficient operations? Is outsourcing to a logistics provider the
best option? Which industry has the best-in-class warehouse performance and how can all this
be measured?

This thesis compares the technical efficiency of warehouses in the Netherlands and Belgium
to answer what factors drive operational efficiency in the sector. It looks into differences among
product categories, ownership types, value chain positions as well as changes in the industry
between 2012 and 2017. The main objective is to find out how automation technology impacts
warehouse efficiency and subsequently whether and by how much floor space, assortment size
and workforce correlate with efficiency. Additionally, two implementations of Sexton, Silkman,
and Hogan (1986), a multiplicative model by Cook and Zhu (2014) and Liang et al. (2008) game
theory approach are compared to find the most applicable cross-efficiency method to facilitate
such a benchmark.

In order to analyze the research questions, operational data from 102 warehouses was gath-
ered, focused on technical and quantifiable inputs and outputs. Based on this empirical data,
cross-efficiency analysis is performed on the entire set and clustered subsets who are then ana-
lyzed to find the input mix and warehouse size that allows the most cross-efficient production.

It is found that the input factors assortment (-0.78) and automation (-0.66) exhibit the
strongest negative correlation with cross-efficiency across both years. Floor space (-0.43) and
workforce (-0.37) are less strongly, but still negatively correlated. These signs and magnitudes
of correlations are found across all industry clusters and both observation periods and are sig-
nificant. Besides the input correlation, it is found that construction and engineering warehouses
are less efficient than the overall sample and that no statistically significant differences exist
between ownership types and value chain positions.

Yet, these observed inefficiencies are not only of operational nature, as scale is another
relevant factor of warehouse performance. This thesis identifies lower and upper thresholds
for inputs sizes, beyond which scale efficiency decreases, such as assortment size between 500 -
60,000 SKUs and floor space between 1,280 - 90,000m2.

Among the cross-efficiency methods, the Sexton’s approach, in its original ratio formulation,
is found to be best suited for the cross-efficiency comparison, given its methodological proximity
to simple DEA, robustness under data modification and ease of implementation. At the same
time, the multiplicative framework and the game theory model tested, both revealed pitfalls in
application and scoring, rendering them less feasible for studies on real-life data sets.

Despite the aim to make the study as representative as possible, a larger and more granu-
lar data set would aid the statistical significance of findings for sub-group analyses with only
few observations. Also, the repeated collection of comparable data over time to build a larger
panel data set would enable more diverse investigation of temporal efficiency changes. Fur-
ther research should concentrate on devising a holistic warehouse automation index to offer a
scoring framework for future quantitative studies. Lastly, the fields of variable returns to scale
cross-efficiency as well as panel-data cross-efficiency offer ample opportunities to advance cross-
efficiency calculation and performance benchmarking to more closely resemble the evaluated
processes.
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1. Introduction
1.1 Motivation

How competitive are our warehouse operations? Where do we rank within our industry and to
what extent is automation technology driving our performance? Although the warehousing and
storage industry in the EU accounted for 73 billion e in 2015 and the sector grows faster than
the EU’s GDP, there is a remarkable research gap in analyzing high-level warehouse efficiency
based on real-life data, making it arduous for businesses to answer the above stated questions
(Eurostat 2017)(Gu, Goetschalckx, and McGinnis 2007). This thesis aims to fill this void, by
exploring to what extent automation technology and other factors impact overall warehouse
efficiency.

While ample research has been dedicated to solving specific warehousing problems, such
as the optimal number of zones in a pick-and-sort order picking system (de Koster, Le-Duc,
and Zaerpour 2012) or the effect of picker personality on picking performance (de Vries, de
Koster, and Stam 2016), their scope is almost always limited to a single aspect of a warehouse.
Innumerable publications on how to improve single operational decisions have been published,
yet besides their narrow focus, they often draw on simulation results (van der Gaast 2015),
small empirical samples (Larco et al. 2016) or readily available data that had been collected
for a different original purpose and consequently might not be as reliable as desired.

Two papers from the last decade, devoted to warehouse efficiency analysis, are Johnson and
McGinnis (2011) on warehousing performance in the United States and De Koster and Balk
(2008) benchmarking international warehouse operations. However, as both of these studies
use Data Envelopment Analysis (DEA) for their analysis, they find 23% and 45% of warehouses
to be efficient. From a managerial perspective this renders it difficult to draw conclusions on
competitive positioning and best practices.

To overcome this issue, multiple approaches to advance efficiency calculation beyond sim-
ple DEA have been suggested, such as cross-efficiency and Stochastic Frontier Analysis (SFA),
with the former being applicable in a warehouse efficiency setting, as no production function is
known ex-ante (Bogetoft and Otto 2011). Since the emergence of cross-efficiency with Sexton,
Silkman, and Hogan (1986), only the adaption by Doyle and Green (1994) has found consider-
able application in managerial studies, while other authors’ methods were often only published
and tested on small data-sets, without anyone ever comparing the merits across the individual
approaches.

1.2 Research objective

This thesis follows a bi-objective approach. First, it intends to provide empirical insights
on the factors that drive warehouse efficiency. A focus hereby will be on the input factor
automation, with other factors including warehouse footprint, assortment size and employee
count. The analysis is conducted on a cross-sectional level initially and then extended to panel
data, comparing the same decision making units’ (DMU) efficiency between today and 5 years
ago.

Second, this thesis will compare four cross-efficiency methods with each other. Primarily it
answers, how the methods vary in approach, computational requirements, sensitivity to various
changes and most importantly obtained efficiency rankings.

Neither a warehousing benchmark with a tie-breaking method between simple efficient
DMUs, nor a comparison of cross-efficiency methods based on real-life data has been conducted
yet. In the following the research questions will be introduced.
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1.3 Research question

1.3.1 Main research questions

The main managerial research question of this study is: ”What input factors drive warehouse
technical efficiency?”

The main methodological research question of this study is: ”What cross-efficiency method
should be used in the future by practitioners when performing efficiency analysis?”

1.3.2 Sub research questions

For the managerial research question, these sub-questions have been formulated:

• What are the effects of automation technology on warehouse efficiency?

• Which of the other inputs and outputs correlate the most with warehouse efficiency?

• How has relative warehouse efficiency changed over the last five years?

For the methodological research question, these sub-questions have been formulated:

• Do the different cross-efficiency methods result in statistically different results?

• In which aspects do the methods deviate from one another?

• Which of the methods’ property sets is most conducive for business-context applications?

1.4 Contribution to practice

For professionals in the warehousing industry, this thesis aims to provide a framework to decide
on input factor usage for optimal operational productivity. Especially the focus on automa-
tion technology and its development and impact over time is of utmost importance for todays
warehouse managers (Bogue 2016). With e-commerce on the rise and the concurrent continued
pressure on margins, delivery times, and demand for additional value added service, investing
into the right assets has become a core competitive factor in the industry. Given the cluster-
ing of warehouses into industry groups, managers can even identify best-in-class input factor
allocations for their respective type of operations (Emmett 2005)(Bowersox, Closs, and Cooper
2013). Moreover, the returns to scale analysis offers a chance for managers to gauge the range
of competitive warehouses’ inputs.

1.5 Contribution to theory

For academics in the fields of efficiency research or productivity bench-marking, this thesis seeks
to advance the practice of cross-efficiency usage by comparing the applicability of existing
methods to real-life data (Sexton, Silkman, and Hogan 1986)(Liang et al. 2008)(Cook and
Zhu 2014). From this, a method recommendation for cross-efficiency usage and consequently
unique efficiency ranking is derived. To facilitate future cross-efficiency research, programming
implementations for the four considered methods will be publicly provided as part of a DEA
MATLAB toolbox (Álvarez, Barbero, and Zof́ıo 2016).

The following chapter contains the literature review and mathematical derivation of the
applied concepts. Readers with a primarily managerial focus may skip this part, as it exclusively
deals with the intricacies of cross-efficiency calculations and their (non)linear implementations.
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2. Literature review
The literature review is split into two parts. First, it briefly discusses the existing research on
warehouse efficiency and performance measurement. Afterwards, the cross-efficiency methods
used in this paper are introduced in detail.

2.1 Warehouse performance

Johnson and McGinnis (2011) distinguish two separate areas of research to analyze the efficiency
of warehouses and their operations. First, there is the line of research focusing on sub-problems
within a specific process of the operations. The second area of ”logistics benchmarking” is
concerned with overall performance comparison and although often applied for companies in
general, seems to have found only limited application in the warehouse sector.

2.1.1 Warehouse sub-problems

For the literature devoted to warehousing sub-problems, Gu, Goetschalckx, and McGinnis
(2007) provide an extensive overview, clustering the problems into two main fields. The first
category is warehouse design, comprising problems on the overall warehouse structure, siz-
ing and dimensioning, department layout, equipment selection and operational strategy. The
second category is warehouse operations, which divides into receiving and shipping, storage
(SKU-department assignment, zoning, storage location assignment) and order picking (Batch-
ing, routing and sequencing and sorting).

Predominantly, literature related to one of these problems, aims to improve the status quo
of current operational procedures, potentially even solving them to optimality. Consequently,
these publications also increase warehouse performance, but are not concerned with aggregated
efficiency of all dimensions interlinked (Gu, Goetschalckx, and McGinnis 2007).

2.1.2 Warehouse benchmarking

The warehouse benchmarking literature is nowhere near as extensive as the above mentioned
category. Cohen, Zhen, and Agrawal (1997) were one of the first scholars to benchmark (spare-
part) logistics operations. Especially when focusing on recent literature, the results in research
databases are meager. De Koster and Warffemius (2005) and De Koster and Balk (2008)
compare European distribution centers of international companies using DEA, Johnson and
McGinnis (2011) study US-based facilities using the same method. While both models draw on
large empirical data sets, the lack of discrimination between DMUs in a simple DEA makes a
detailed efficiency comparison impossible. Andrejić, Bojović, and Kilibarda (2013) use principal
component analysis (PCA) - DEA to analyze Serbian distribution centers. Yet, despite the PCA
treatment of data, the limited sample size of seven, renders the results inconclusive.

Banaszewska et al. (2012) develop a framework for measuring efficiency level for depots,
justified by attesting warehouses the highest importance for performance in a distribution
network. This opinion is shared by the academics in the field - yet also this paper only resorts
to applying a DEA approach, which is then extended by ranking efficient DMUs based on the
number of times they serve ”as a referent DMU for inefficient DMUs”.

Regarding the employed methods, the current literature favors the non-parametric multi-
input, multi-output approach of DEA, coupled with its linear programming properties for
warehouse benchmarking, over parametric approaches such as SFA or other non-parametric
methods like Free Disposal Hull (FDH). This thesis follows the common practice of DEA-based
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benchmarking in so far as that its method of choice, cross-efficiency, employs DEA as a starting
point of calculations.

Also, this thesis will use the measures and the pre-tested questionnaire from De Koster and
Balk (2008) with some modifications, to allow for an increased focus on automation technology’s
relation to warehouse efficiency. Four cross-efficiency DEA methods will each be applied to the
data set in order to break the tie between equally efficient DMUs.

2.2 Efficiency methods

Calculating the efficiency of DMUs in various situations can be achieved through numerous
methods. This section gives a short overview of commonly used approaches in operations
research, arguing why eventually DEA/cross-efficiency has been chosen for this thesis.

Fried et al. (2008) define efficiency measurement as ”a comparison of actual performance
with optimal performance located on the relevant frontier”. Because this optimal frontier is
rarely know in real life, one has to approximate it, using different methods. The broadest
classification for these methods provided by the above mentioned authors is into parametric
and non-parametric.

2.2.1 Parametric methods

For parametric methods, a core prerequisite is the existence of a production- or cost func-
tion. Estimating these is common practice in the fields of econometrics, which is why these
approaches are also often called econometric. With that optimal production frontier at hand,
parametric methods then try to distinguish which part of observed deviations from this frontier
are statistical noise and which are attributable to a DMU’s inefficiency. A prominent example of
this approach is the Stochastic Frontier Analysis (Kumbhakar and Lovell 2003). Because there
exists no readily available warehouse production frontier specification, parametric methods are
infeasible in the context of this thesis.

2.2.2 Non-parametric methods

In contrast to the parametric approach introduced above, non-parametric methods avoid spec-
ifying an optimal frontier ex-ante, but rather create Production Possibility Sets (PPS), a set
of feasible input and output combinations based on the available data (Cooper, Seiford, and
Tone 2007). The most commonly used non-parametric method, DEA, owes its name due to its
enveloping property of the dataset’s efficient DMUs.

Based on this general idea of assessing efficient DMUs purely based on empirical obser-
vations, several extensions of DEA have been developed. When dropping the assumption of
convexity, i.e. that the marginal rates of substitution between inputs and outputs are positive,
one arrives at the Free Disposal Hull method (Fried et al. 2008). Bogetoft (2000) states that
FDH is useful for benchmarking, precisely because the efficient frontier consists of only observed
DMUs. However, FDH also excludes input and output vector combinations from the PPS, sim-
ply because they were not part of the empirical sample but might be achievable through a
(convex) linear combination of DMUs (Green and Cook 2004). Hence, for this benchmarking
purpose with a small sample of all warehouses and especially the cross-efficiency application,
DEA was given preference over FDH.

Márquez and Lev (2015) also mention Analytical Hierarchy Process (AHP) and Technique
of Order Preference by Similarity to the Ideal Solution (TOPSIS) as common methods for
multi-attribute decision making in business settings. AHP was out of scope, as it requires a
ranking of importance of goals and alternatives - the opposite of what this thesis aims for. This
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benchmark is based on the idea that each DMU is able to select its own weights and shadow
prices, because multiple input and output vector combinations can be competitively used in
warehousing operations.

TOPSIS has been used in conjunction with DEA by Zeydan and Colpan (2009), to yield a
preferred order of efficient DMUs after simple DEA application. However, this thesis’s bench-
mark searches for optimal input and output combinations and does not concern itself with a
second goal of avoiding the worst-in-sample performance, hence opted against a (fuzzy) TOP-
SIS approach (Márquez and Lev 2015). Additionally, cross-efficiency is closer to the original
idea of DEA and can be considered a natural extension.

In summary, this thesis uses DEA-based cross-efficiency, because this method does not
require any ex-ante production frontier, external weights or other assumptions, while uniquely
ranking DMUs by proximity to an empirically measured efficiency frontier.

2.3 DEA - Data Envelopment Analysis

2.3.1 Basic DEA concept

In an one-input, one-output scenario, efficiency is merely the ratio of output/input and com-
paring several entities based on it is trivial. However, when adding more inputs or outputs the
efficiency computation can become a complicated endeavor.

Building on (Farrell 1957), Charnes, Cooper, and Rhodes (1978) paved the way for DEA’s
broad academic and practical adaptation (Fried et al. 2008)(de Koster, Balk, and Nus 2009).
According to Cooper, Seiford, and Zhu (2011), DEA’s popularity stems from the few required
assumptions that nevertheless allow to solve complex cases with unknown input to output
relationships. Charnes, Cooper, and Rhodes (1978) defined the objective function to find
DMUj’s efficiency (θj) as:

max θj =

M∑
m=1

yjmu
j
m

N∑
n=1

xjnv
j
n

, (2.1)

where the DMUj’s known M outputs yj1, ..., y
j
m are multiplied by their respective weights

uj1, ..., u
j
m and divided by the N inputs xj1, ..., x

j
n multiplied by their respective weights vj1, ..., v

j
n.

The efficiency score θj is sought to be maximized, under the constraints that using those
weights on each DMUk k = 1, ..., K, no efficiency score exceeds one:

M∑
m=1

ykmu
j
m

N∑
n=1

xknv
j
n

≤ 1 k = 1, ..., K, (2.2)

and all inputs, outputs and weights have to be non-negative.
This concept was expanded by various scholars and papers during the subsequent years and

decades. Some of the aspects and additions that were made to the original model are introduced
in the following subsections.

2.3.2 Input and output orientation

Input-oriented DEA differs from output-oriented DEA in that input-orientation focuses on the
reduction of the input vector by a scalar amount. A 70% efficient DMU in an input-oriented
model can reduce its inputs by (1-0.7)=30% while keeping the outputs constant to be efficient.
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Consequently, in an output-oriented model, the focus is on expanding the output-vector.
Under constant returns to scale, the formerly mentioned DMU is still 70% efficient, but the
result is interpreted differently. In the output oriented case, the 70% efficient DMU can increase
its outputs by 142% = (1/0.7), using the same inputs to be efficient (Daraio and Simar 2006).
Which method is used, largely depends on the economic reasoning behind the observed case and
whether input and outputs are exogenous or endogenous. There are also ratio-approaches to
consider input and output changes at the same time, they are however less popular in practice
(Chambers, Chung, and Färe 1996)(Färe et al. 2015).

2.3.3 Technical and allocative efficiency

The difference between technical and allocative efficiency arises from different perspectives on
how inputs and outputs can be used and interchanged (Fried et al. 2008). From a technical
point of view, a DMU with an efficiency score of less than 1 is inefficient because it fails to
generate enough outputs with given inputs or uses too many inputs to create a given output. A
technical focus is dominant in situations, where inputs and outputs are largely interchangeable.
Allocative efficiency on the other hand, focuses on how well inputs and outputs are allocated
in respect to prices. Inefficiencies therefore arise, not because there are not enough outputs
generated or too many inputs used, but because the existing inputs are employed in the wrong
mix or in the right mix, but thereby achieving a wrong mix of outputs with respect to their
market prices. This perspective is mostly found in situations in which a clear economic objective
function exists, such as cost minimization or scenarios with customer preferences.

2.3.4 Returns to scale

As Fried et al. (2008) phrase it, ”returns to scale relate to how [...] the average product would
be affected by scale size”. In this thesis, returns to scale (RTS) are assumed to be constant,
which in real life would mean that by doubling all inputs, one produces twice as many outputs.
This perspective is the one propagated in Charnes, Cooper, and Rhodes (1978) and following
the authors’ names the constant return to scale (CRS) model is often abbreviated as CCR
in the literature. In contrast to CRS, one can allow for diminishing or increasing returns to
scale, which for a lot of real-life applications is a warranted assumption. Banker, Charnes,
and Cooper (1984) expand the CCR model to allow for variable returns to scale by including
another parameter u∗0, which represents the returns to scale and can be interpreted as the y-axis
intercept of a supporting hyper-plane on the efficiency frontier. This variable returns to scale
(VRS) model is often abbreviated as BCC.

Section 5.1.2 introduces RTS calculations in further detail, while section 5.1.3 investigates
the RTS distribution in the warehouse data set.

2.3.5 Disposability of inputs and outputs

In the standard DEA model, one assumes strong free disposability. This means that if the
input vector x produces the output y, a DMU is free to also produce less output with the same
input vector x. Conversely, a DMU is free to produce the output vector y with more inputs
than vector x (Fried et al. 2008).

For many applications, this assumption holds, as in a warehouse one can, for example,
perfectly well increase employee headcount while keeping the output constant. However, the
disposability assumption is challenged in settings with input congestion or undesirable outputs
(Cooper, Seiford, and Zhu 2000). A classic example for input congestion is an excess number of
miners in a coal mine, blocking each other, thereby reducing output. Undesirable outputs are
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often part of energy- or sustainability related studies, where pollution is an undesirable output
that cannot be avoided (Yang and Pollitt 2009). The interested reader is here referred to Fried
et al. (2008), where multiple ways of incorporating such ”bad” inputs or outputs are discussed.
However, in light of the pre-tested model and the warehouse benchmarking goal of this thesis,
the presented models below assume strictly positive data with positive relations between inputs
and outputs.

2.3.6 Drawbacks of DEA

In this subsection, the most-commonly cited drawbacks of DEA applications and methods to
circumvent those are described.

When performing DEA, as mentioned above, almost always multiple DMUs receive an
efficiency score of 1. This inadvertent result stems from each DMU being able to optimize
its efficiency score solely focused on its own inputs and outputs and their respective weights.
These weights represent the existing substitutability between inputs and outputs combinations,
characterizing the production technology. Consequently, a common observation are extreme
weight settings, often weighing several inputs and outputs at 0 and heavily focusing on one input
and output with the highest competitiveness. This problem only exacerbates the more inputs
and outputs are analyzed, as it yields more degrees of freedom (more weight combinations) for
a particular DMU to choose from.

For two reasons, multiple ”efficient” DMUs are not a desirable outcome:

1. The whole process of DEA is undertaken to differentiate efficiency among entities - yet a
result where commonly multiple DMUs receive the same (and the highest possible) score,
fails its intended purpose.

2. Outliers can often choose weights that make them appear efficient, although they might
only capture a specific niche without being actually efficient.

To remedy this problem, Thompson et al. (1986) suggested to restrict the set of admissible
weights, or similarly disallow zero-weights. This however, directly contradicts the original
intention behind DEA - to have DMUs rank themselves without any external adjustments and
is frowned upon by some DEA pundits.

Cross-efficiency solves precisely the above mentioned issue without imposing any artificial
restrictions. Through the peer-appraising nature of cross-efficiency, the resulting scores observe
two properties:

1. Cross-efficiency breaks the tie between the multiple DMUs with a DEA efficiency score
of 1, thereby allowing a unique ranking of DMUs.

2. Because a DMU’s score is dependent on all other peers, maverick DMUs are penalized
and receive relatively lower efficiency scores, shifting the focus away from efficient, but
unrepresentative entities (Doyle and Green 1994).

2.4 Cross-efficiency

2.4.1 Different cross-efficiency methods

While the merits of cross-efficiency have been introduced above, the method does not come
without its own limitations. Most notably, it was found that the weights derived from DEA are
non-unique. In other words, for each DMU there can be multiple sets of weights that satisfy
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the DEA’s constraints and still result in the same DEA efficiency. While unpleasant in a DEA
case, this becomes problematic for cross-efficiency, as the peer-appraisal scores are derived from
exactly these weights.

There have been multiple approaches in the literature to find non-arbitrary cross-efficiency
weights, by adding secondary goals to the cross-efficiency computation. Although they all
promise to yield unique and reproducible results, it is investigated for four common, but method-
ologically different approaches, whether the obtained results are the same (or at least similar)
and how robust they are.

For this analysis, this thesis compares two implementations of Sexton, Silkman, and Hogan
(1986) approach with Cook and Zhu (2014) multiplicative method and with Liang et al. (2008)
game theory framework.

2.4.2 Basic cross-efficiency concept

In the following, the basic cross-efficiency concept as well as its core deficiency will be intro-
duced. Subsequently, the four approaches to remedy this issue are presented.

The basic cross-efficiency concept builds on the notion of CRS DEA, however it uses the
obtained weights of DMUj, j = 1, ..., K and multiplies them by each input and output set
(xk, yk) of DMUk, k = 1, ..., K to generate peer-appraisal (efficiency) scores for every DMUj,
DMUk pair (Doyle and Green 1994). This peer-appraisal efficiency score is denoted as:

θj,k =

M∑
m=1

ykmu
j
m

N∑
n=1

xknv
j
n

(2.3)

In its most basic form, the cross-efficiency then is calculated as:

ek =
1

K

K∑
j=1

θj,k or ek =
1

K − 1

∑
j 6=k

θj,k, (2.4)

depending on whether one chooses to include the self-appraisal score θk,k in the analysis or not.
A DMUk’s self-appraisal score, evidently, is the same as the simple DEA efficiency score of
DMUk (Balk 2017).

After performing these calculations, one is left with a K ∗K matrix of peer-appraisal scores,
from which the cross-efficiency scores for every DMU can be derived. Although the above
mentioned calculation uses the arithmetic mean to aggregate those scores to the cross-efficiency
output, Aczél and Roberts (1989) note that a comparison based on cross-efficiency scores is
only meaningful using the geometric mean, suggesting the usage of:

ek =

 K∏
j=1

θj,k

 1
K

or ek =

∏
j 6=k

θj,k

 1
K−1

, (2.5)

when comparing cross-efficiency scores.

2.4.3 Non-uniqueness problem

Although this cross-efficiency method breaks the tie among all formerly ”efficient” DMUs, it
uses the non-unique weights of the DEA model. Because these weights are non-unique, there
may be more than one set of weights (xj, yj) for DMUj that all result in the same maximal
efficiency θ∗k. As long as these weights are only used for self-appraisal this does not constitute
a major problem, but for cross-efficiency purposes these weights impact each DMU’s score,
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rendering the situation problematic. Depending on the implementation, the non-uniqueness
property potentially leads to different sets of weights and consequently different cross-efficiency
scores (Sexton, Silkman, and Hogan 1986).

Faced with this conundrum, it has to be noted that this is not merely a mathematical oddity,
but a considerable practical limitation, because these weights represent the shadow prices of
inputs and outputs. With them being arbitrarily selectable, any interpretation of results or
peer selection is questionable at best and futile at worst.

2.4.4 Four approaches to remedy the non-uniqueness problem

Approach 1: Linear aggressive or benevolent approach Expanding on Sexton, Silk-
man, and Hogan (1986), Doyle and Green (1994) was (and until today is) the main source
for academics and practitioners alike to expand the standard cross-efficiency model to obtain
unique results1.

The general idea of the agressive or benevolent approach is to solve the cross-efficiency model
with an objective to minimize or maximize the sum of all peer-appraisal scores, subject to the
restrictions that the self-appraisal scores remain equal to the results of the simple DEA and
no peer-appraisal score is >1. Because optimizing over the sum of ratios creates a non-linear
problem, Sexton, Silkman, and Hogan (1986) use a ”linear surrogate”, for which they sum over
all DMUj’s j 6= k inputs and outputs, multiplied by DMUk’s weights:

Aggregate outputs:
∑
j 6=k

∑
m

yjmu
k
m, (2.6)

Aggregate inputs:
∑
j 6=k

∑
n

xjnv
k
n (2.7)

Substracting the aggregated inputs from the aggregated outputs then creates the following
linear problem that is solved as a second step, subsequently to the regular DEA optimization:

maxBk =
∑
j 6=k

∑
m

yjmu
k
m −

∑
j 6=k

∑
n

xjnv
k
n, (2.8)

subject to:

vkm and ukn ≥ 0, (2.9)

θj,k ≤ 1 for all DMUs j 6= k, (2.10)∑
n

xknv
k
n = 1, (2.11)

∑
m

ykmu
k
m − θk,k

∑
n

xknv
k
n = 0 (2.12)

In Doyle and Green (1994), three slightly different objectives are mentioned, all aiming at
minimizing or maximizing the peer-appraisal scores, but with slightly different approaches to
stating the objective. The above presented equations are based on the linear, second approach.

1While current literature unanimously names Doyle and Green (1994) as the originators of the aggressive
or benevolent approach, this is a miss-attribution of credit to the disadvantage of Sexton, Silkman, and Hogan
(1986). Sexton, Silkman, and Hogan (1986) not only coin the term cross-efficiency and introduce the method,
they also already use the terminology of aggressive and benevolent and last but not least apply it to a data
set. This thesis’ author conjectures that the general unavailability of this book-chapter in electronic databases
caused pundits to propagate the opinion that the more readily disseminated Doyle and Green (1994) is the
original source of the method. This thesis wishes to break with this habit and calls the methods Sexton Classic
and Sexton Ratio from here on.
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The models in which this objective is minimized are called ”aggressive”, while the maximization
models are called ”benevolent”. One may average the results obtained from both approaches,
for a less extreme set of cross-efficiencies. One year after the original article, the same authors
published another paper, in which they added a fourth formulation of the objective. They also
tested these different approaches and found ”extremely high correlations [...] between all four
ways”, which is why in this paper only the second approach will be implemented, without co-
implementing the others (Doyle and Green 1995). Until today, the aggressive and benevolent
approaches find the most real-life application of all cross-efficiency methods. Examples of that
in the supply-chain sector are: Faber, De Koster, and Smidts (2013) on warehouses management
or Yu, Ting, and Chen (2010) on information sharing in supply chains.

Approach 2: Ratio aggressive or benevolent approach The formerly introduced method,
despite its common application in practice, is based on a model from 1986 and works based
on a linear approximation. This thesis diverges from the common scholarly path and also
implements the original non-linear approach. Because of the ratio-form objective, this im-
plementation is closer to the pure idea of minimizing the peer-appraisal scores and requires
no linear approximation. The author therefore believes the resulting cross-efficiency scores to
more closely resemble the methodological DEA basis. The two main reasons that most likely
exist(ed) for choosing the linear surrogate over the non-linear original were:

1. The computational power of the average CPU in 1986 was less than 1/10,000 of today’s
computers, thereby rendering non-linear computational infeasible for most data set sizes.

2. A linear program always finds the same reproducible, optimal solution - non-linear pro-
grams do not share the same property. The solution is dependent on solver algorithms,
implementation, starting values and solution sensitivity. They might find the global op-
timum or converge to a local optimum and then stop analyzing the search space further.

With the advance of technology over the last 3-4 decades and the increase of available
computational power, the first problem does not pose an issue any longer (Waldrop 2016). For
the second issue, the author believes that using the original DEA weights as initial weights for
the cross-efficiency optimization function should serve as a natural starting point for the solver.
Also up to 1050 iterations were performed per model run, to avoid the algorithm prematurely
selecting a local optimum as the globally optimal solution.

The idea of the second approach is to also maximize or minimize the peer-appraisal scores
as a secondary constraint, but instead of using the linear surrogate as introduced above, this
time the actual sum of ratios will be used:

maxBk =
∑
j 6=k

∑
m y

j
mu

k
m∑

n x
j
nvkn

(2.13)

The constraints in expressions (2.9) and (2.10) can be applied analogously for this method.
However, there are two ways to implement the constraint that the newly chosen cross-efficiency
weights yield the same efficiency for DMUk. In the linear model, this was achieved by con-
straint (2.11) in conjunction with constraint (2.12). As this approach left the realms of linear
programming, this could also be stated as:∑

m y
k
mu

k
m∑

n xknv
k
n

= θk (2.14)

At first, it seems appealing to shift to ratio-based formulation as much as possible, mostly
because it avoids the constraint of the input denominator to equal 1. Still, in this thesis it
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was decided to not employ the ratio constraint and opt for the variant shown in constraints
(2.11) and (2.12). The two reasons for this decision are: First, the DEA model employed to
derive the simple efficiency score and core component of this constraint is obtained by using
a linear approach that constrains the denominator exactly as constraint (2.11) does. Thus, a
linear constraint is more closely related to the original DEA idea. Second, by virtue of this
standardization to 1, the resulting weights are less erratic as in the non-limited ratio score case.

Therefore, in this model the ratio objective will be used in combination with the linear
constraints previously introduced.

Approach 3: Multiplicative approach The third approach is based on a multiplicative
approach to DEA, originally introduced by Charnes, Cooper, Seiford, et al. (1982) that was
extended by an ew term, to produce results that remain invariant, when changing an input’s
or output’s unit of measure (Charnes, Cooper, Seiford, et al. 1983). Hence, DMUk’s simple
efficiency following this multiplicative approach is calculated as:

θk = max
u,v,ω

(
eω
∏M
m=1(y

k
m)um∏N

n=1(x
k
n)vn

)
, (2.15)

subject to:
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m)um∏N

n=1(x
j
n)vn

≤ 1 j = 1, ..., K, (2.16)

u, v ≥ 1, (2.17)

ω ≥ 0 (2.18)

This measure was extendend by Cook and Zhu (2014) to a cross-efficiency logic, which
is similar to the benevolent approach introduced in the previous section. Yet, following this
multiplicative DEA uses the weights as exponents rather than factors and multiplies inputs and
outputs with each other rather than summing over them. The cross-efficiency score for DMUk

following Cook and Zhu (2014) is therefore computed as:

Ek = max

 K∏
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, (2.19)

subject to:
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≤ 1 j = 1, ..., K; k = 1, ..., K, (2.20)

Ek,k =
eηk
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m=1(y

k
m)u

k∗
m

eξk
∏N
n=1(x

k
n)vk∗n

= θ∗k k = 1, ..., K, (2.21)

vm, xn ≥ 1, (2.22)

ξk, ηk ≥ 0, k = 1, ..., K (2.23)

Constraint (2.21) hereby limits the cross-efficiency self-appraisal score to be equal to the
DEA efficiency result (θ∗k) for that DMUk. It shall be noted that constraint (2.20) iterates over j
and k, which is due to the maximum efficiency approach implemented. In the above mentioned
paper, the authors first introduce a standard efficiency model, which follows Sexton’s models’
logic, but uses multiplication rather than addition. In the maximum efficiency model, this is
replaced by each DMUk individually maximizing the peer-appraisal score it receives from each
DMUj. This requires K2 constraints for each DMU, but therefore results in slightly higher
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efficiency scores, as the maximum peer-appraisal scores per DMU-pair are used, rather than
utilizing the maximum sum overall all peer-appraisals of each DMU.

This entire model can be linearized, by taking logarithms of the input and output values,
which transforms the products to sums. By doing this, even large DMU sets with many input
and outputs can be solved in very limited time, using linear programming techniques. Cook
and Zhu (2014) claim that ”the attractive feature of the proposed multiplicative approach is
that the resulting cross-efficiency score is uniquely determined”.

However, in this thesis, the less complex notation from Charnes, Cooper, Seiford, et al.
(1982) that excludes the variable returns to scale (and is thereby better comparable with
Sexton’s approaches) will be employed. Consequently, for the CRS efficiency, ω is excluded:

θk = max
u,v

(∏M
m=1(y

k
m)um∏N

n=1(x
k
n)vn

)
, (2.24)

and for the cross-efficiency calculation η and ξ are excluded:
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n)vk∗n

= θ∗k k = 1, ..., K (2.25)

The constraints are used analogously. While this updated model does not exhibit unit-
invariance anymore, it is more comparable to the other models, as it follows a CRS logic and
for the purpose of this thesis unit-invariance is a not a necessary model property.

Approach 4: Game theory approach The three approaches introduced so far were ”pure”
cross-efficiency methods, in that they follow the basic logic of Charnes, Cooper, Seiford, et al.
(1982) and Sexton, Silkman, and Hogan (1986) in calculating the DEA efficiencies first and
subsequently solving a second problem based on the original solution to obtain unique weights
and thereby reproducible results. The game theory approach, introduced by Liang et al. (2008)
approaches cross-efficiency differently. In an initial step one solves the simple DEA problem.
Then, using those weights obtained for DMUk one calculates a game cross-efficiency α for
DMUj in period 0:

α0
k,j =

∑M
m=1 u

k
mjymj∑N

n=1 v
k
njxnj

, k = 1, ..., K, (2.26)

where ukmj and vknj ”indicate that DMUj is permitted only to choose weights that will not deteri-
orate” the currently estimated efficiency of DMUk. In the following, this game cross-efficiency
is transformed to αk , by averaging across all αk,j. This way, each DMUk, k = 1, .., K has
only one associated αk value per period, which is updated iteratively as shown in equation
(2.33). The DEA results are used to derive αk for the starting period 0, which is then updated
by solving the following program for each DMUj:

max
M∑
m=1

ukmjymj, (2.27)

subject to:

N∑
n=1

vknjxnl −
M∑
m=1

ukmjyml ≥ 0, l = 1, ..., K, (2.28)

N∑
n=1

vknjxnj = 1, (2.29)

20



αk
N∑
n=1

vknjxnk −
M∑
m=1

ukmjymk ≤ 0, (2.30)

uknj ≥ 0 n = 1, ..., K, (2.31)

vkmj ≥ 0 m = 1, ..., K (2.32)

After having solved this model for each DMUk, DMUj pair, one derives the αt+1
k values in

the following manner:

αt+1
j =

1

K

K∑
k=1

M∑
m=1

(αtk)u
k∗
mjymj (2.33)

With these new game cross-efficiency scores, one re-iterates through the model until the α
values converge. Liang et al. (2008) prove that this is the case, which gives this model the
property of finding unique cross-efficiency scores.

2.4.5 Application to a real-life data set

Three out of the four aforementioned methods have all been introduced by their authors given
numerical examples, and especially Sexton, Silkman, and Hogan (1986) method (arguably
because of its implementational simplicity) has found considerable application in practice. Yet,
they have rarely (if never) been compared against each other on a real-life data set.

This research gap coincides with the above mentioned purpose of this study of analyzing
warehouses in the Netherlands and Belgium for their technical efficiency. All observations have
specifically been collected for a (cross)-efficiency application to guarantee accuracy, compara-
bility and recentness of the underlying data. In gathering this new data set, the author hopes
to minimize non-method-attributable differences in the results.
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3. Methods and conceptual framework
3.1 Cross-efficiency DEA model

For a DEA model, it is pivotal to select as few inputs and outputs as possible, while capturing
all relevant factors that determine productivity. Failing to include a valid parameter ”will bias
the results against efficient users of the input or efficient producers of the output” (Sexton
1986). Simultaneously, adding parameters that do not influence efficiency increases the degrees
of freedom for DMUs, and thereby makes certain DMUs appear more efficient than they actually
are. To mitigate any risk of such false attributations interfering with the results of this study,
a DEA model is used that draws on De Koster and Warffemius (2005), De Koster and Balk
(2008) as well as Faber, De Koster, and Smidts (2013), as they have extensively surveyed
warehouses and performed research based on this thoroughly tested and proven questionnaire
in the past. While De Koster and Balk (2008) have used four inputs and five outputs, Faber,
De Koster, and Smidts (2013) reduced this to four inputs and four outputs, combining the
formerly separate outputs of value-added logistics and special processes into one construct, as
value-added services by itself did not significantly impact efficiency. Consequently, this thesis
uses the following DEA model:

Figure 3.1: DEA input-output model of a warehouse.

3.2 Measurement of variables and constructs

In this section the input and output factors and their measurement are reviewed. For a discus-
sion of the merits of these variables and constructs and their operational impact, please refer to
the above mentioned publications. The entire survey questionnaire can be found in appendix
B.

3.2.1 Four input factors

• Warehouse size in m2: Measured on a ratio scale, capturing the floor space of the
warehouse, including mezzanine floors, in 2012 and 2017 each.

• Number of FTEs: Measured on a ratio scale, including employees and temporary work-
ers that are active in the warehouse on a full-time equivalent basis. Due to comparable
labor laws and union presence in Netherlands and Belgium, the number of hours worked
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per employee only deviates minimally. Direct workforce (active on the warehouse floor)
and indirect workforce (i.e. not operational on the floor) are both included, as different
levels of automation may require a different split of direct and indirect employees for the
warehouse operations.

• Number of SKUs: Measured on a ratio scale as the average number of unique articles
(SKUs) that are simultaneously stored in the warehouse, in 2012 and 2017 each.

• Level of automation: Measured on an ordinal scale, as the combination of an ordinal
score for hardware automation and an ordinal score for software automation. Hardware
automation is calculated based on how many out of 14 common automation technolo-
gies are employed in a warehouse. For the time comparison, each DMU also answered
which automation additions it made during the last 5 years. Today’s automation score
is then calculated as the sum of the score 5 years ago plus all additions. Next to hard-
ware automation, software automation is measured on a six-point ordinal scale, through
a question about the warehouse’s usage of information systems. The possible answers
were: (1) No information system; (2) a standard ERP warehouse module; (3) a stan-
dard ERP warehouse module with more than 20% customization; (4) a standard WMS
package; (5) a standard WMS package with more than 20% customization or (6) a tailor-
made/customized system.

Because there is no established way on how to weigh software and hardware automation,
three different (Sexton’s ratio) cross-efficiency implementations with distinct ways of cal-
culating the overall automation score were compared to look at ranking impact of weight
differences for software and hardware:

Method 1: The hardware and software scores are added, which allows DMUs to gather up to 28
points (14 in 2012 plus 14 additions over the last 5 years) for hardware automation
and 6 for software automation. However, the mean hardware automation score
in 2017 was 2.2 (1.3 in 2012), compared to 4 for software. On average, this case
weighs software automation at 66%, but leaves ample room for DMUs to increase
the hardware weight.

Method 2: Only the hardware score was considered, the software score was excluded.

Method 3: The hardware score and software score were both standardized, by dividing each
score individually by the range of observations (Maximum score - minimum score)
and then summing over both. Hence, the combined automation score lies between 0
and 2 for each DMU.

The Kendall’s ranking correlation for all three methods in 2017 are shown in table 3.1
(2012 values in appendix F):

Automation Method Kendall’s τ 2017 Method 1 Method 2 Method 3

Method 1 1***
Method 2 0,74*** 1***
Method 3 0,86*** 0,69*** 1***

Table 3.1: Cross-efficiency ranking correlation for different automation score calculations 2017.

The rank correlation between both methods that include software as well as hardware is
0.86 in 2017 and 0.94 in 2012, both at 0.01 significance levels. The ranks, when the soft-
ware component was excluded, correlate significantly lower with the other two methods.
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Because of this robustness under different weighting schemes when both components are
included, for the rest of this thesis, the approach summing over both automation compo-
nents will be used - as it provides the highest freedom for DMUs to differentiate themselves
through high levels of hardware automation.

3.2.2 Four output factors

• Number of order lines: Measured on a ratio scale. Refers to average daily order lines
shipped per day during 2012 and during 2017. Through incorporation of the average,
effects of order level seasonality and random fluctuations are mitigated.

• Error-free order line %: Measured on an nine-point ordinal scale, with the following
values: (1) Not tracked (2) <90%; (3) 90-95%; (4) 95-97%; (5) 97-98%; (6) 98-99%; (7)
99.0-99.5%; (8) 99.5-99.9% and (9) >99.9%. Not tracking this metric (or not having the
data available) is penalized, as error-free percentage is (one of) the main quality criterion
in warehousing and not observing it renders most internal quality control efforts mute. By
providing staggered levels of error-free order-lines, this model can differentiate between a
wide array of error-free percentages.

• Order flexibility: Measured on a 30-point ordinal scale. To measure this construct, each
respondent was asked whether the warehouse could cope with a total of six internal and
external changes (1) much worse; (2) worse; (3) equal; (4) better or (5) much better than
the competition. When ”not applicable” was selected, the respective question was taken
out consideration for that warehouse and the score was re-scaled. Re-scaling was achieved,
by elimination the ”not applicable” questions from a DMU’s score and multiplying the
remaining score by 6 divided by the number of questions that were applicable.

• Special processes: Measured on a 10-point ordinal scale, where respondents selected
from a list of ten special, value-added processes that may be performed by the warehouse.
The sum of a selections in each year was used as the score.

3.3 Efficiency research hypotheses

In this section, the research hypotheses concerning the cross-efficiency benchmark are intro-
duced. The main hypotheses are related to automation’s influence on warehouse performance,
for which the author conjectures:

Hypothesis 1a The correlation between the level of automation and warehouse efficiency is
positive.

Hypothesis 1b The relative change in the level of automation over time, and the relative
change in the warehouse’s efficiency rank correlate positively.

This proposition would be an intuitive explanation for the increase of warehousing automa-
tion investments in recent years (Wang, McIntosh, and Brain 2010). A similar propostion is
made by Hamberg and Jacques (2012), who believe that as the technical hurdles for some of
the most complex problems in warehousing are overcome (unstructured automatic item picking,
autonomous vehicle roaming), a transformation toward automated logistics is likely to occur.

Furthermore, it will be analyzed, whether size related input factors: floor space (in m2), the
number of SKUs, or the number of FTEs play a role in efficiency. Because De Koster and Balk
(2008) and Hackman et al. (2001) independently found small warehouses (measured in FTEs)
to be more efficient, our hypotheses are as follows:
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Hypothesis 2 The correlation between the number of SKUs and warehouse efficiency is neg-
ative.

Hypothesis 3 The correlation between the number of FTEs and warehouse efficiency is neg-
ative.

These two hypotheses are not built on the general assumption of decreasing returns of
scale, as a newly added SKU is not inherently less efficiently handle-able than an existing
one. Also, two FTEs can e.g. pick twice the number of order-lines than one FTE can. The
assumption of lower cross-efficiency for higher SKUs is based on the fact that more SKUs may
make it more difficult to have standardized processes, keep high turnovers of products and lower
workers’ familiarity with each product. Likewise, more FTEs may lead to a lower degree of
identification with the company, lower social pressure, more formalized rules and less specific
talent being hired.

However, as there is a constant shift towards facilities with larger footprints, designed to
reap the benefits of economies of scale, not all size-related input factors are likely to nega-
tively correlate with efficiency. A report from Onstein et al. (2016) found that especially in
the Netherlands, ”the growing demand for very large DCs” is a dominant phenomenon, most
prominently for e-commerce logistics activities. Because there is such a strong trend towards
bigger facilities, the hypotheses related to footprint are:

Hypothesis 4a The correlation between the available floor space (in m2) and warehouse effi-
ciency is positive.

Hypothesis 4b The relative change in the available floor space (in m2) over time, and the
relative change in the warehouse’s efficiency rank correlate positively.

It is worth mentioning that floor space and SKUs might correlate, but are not logically tied
to each other. A bottling warehouse next to a beverage factory will more likely use more floor
space for the same number of SKUs than a consumer electronics warehouse. Also, a lower floor
space usage for the same number of SKUs and the same type of warehouse could indicate better
stock management/higher inventory turnover.

Similarly, floor space and FTEs will likely correlate as well, however there are multiple ways
in which a warehouse can eliminate workforce requirements within the same footprint (smart
usage of floor space, clever routing, efficient procedures, order batching, shift scheduling etc.),
without changing its automation. Therefore, these input factors are initially considered sepa-
rately, but it will be tested whether the three input factors truly are substitutes or complements
of each other.

Figure 3.2: Conceptual model.
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Certain scholars object to using a conceptual model, in which the dependent variable is
calculated based on the explanatory variables of the same model. However, in order to ob-
tain the cross-efficiency score, the dimensional inputs and outputs are transformed extensively,
resulting in a dimensionless cross-efficiency score. Because of this transformation and loss of
dimensionality, the relation of inputs and outputs to cross-efficiency scores is unproblematic for
the conceptual model.

3.3.1 Clustering and sub-group analysis

The initial data set of respondents contains warehouses from all industries, all positions in
the value-chain and all ownership types. These have varying effects on the comparability of
DMUs. While e.g. foreign companies or logistic companies might result in different levels of
management knowledge compared to regular Dutch commercial warehouses, the impact on the
technology level is assumed to be marginal.

But the percentage of cold-storage and the warehouse’s position within the company’s value
chain have a large impact on the achievable efficiency, as they are indirectly impacting the
technology (Emmett 2005). For each sub-category cluster of warehouses with a significant
number of respondents, this thesis provides a separate, individual cross-efficiency analysis. It
is expected to observe larger cross-efficiency variations across the entire set, but due to market
forces and competitive pressure relatively uniform scores within a sector.

3.4 Method comparison metrics

For the thesis’ second objective, to distinguish the individual merits of four cross-efficiency
methods, they will be analyzed in respect to the differences in implementation, usage and
results. First and foremost, it will be determined whether the different result sets, obtained
through the different techniques, are statistically different by performing a Wilcoxon signed
rank test on the data. If they happen to be different, based on the metrics of table 3.2,
recommendations will be provided on when to use which method.

Metric Description

Methodological
Proximity to DEA

Tests how close the cross-efficiency method follows the logic of the
original DEA model. As the DEA efficiency scores are a natural

upper limit for the cross-efficiency scores, methodological
proximity makes the result more sound.

Implementational
Ease

Tests how easily the method can be implemented and the degree of
computational strain when solving a large data set with it.

Especially, for application in non-academic fields, easy
implementation and especially the swift calculation in case of

automated or frequent application are relevant.

Extendability Tests how many modifications to the basic model are described in
literature, that allow tweaking the basic method to the

requirements of an individual project.
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Metric Description

Discriminatory
Properties

Tests how high the relative differences are between the DEA
efficient (CRS score of 1) DMUs and how much of the overall

efficiency range they are assigned to. As cross-efficiency is mainly
applied to break the tie between various efficient DMUs, this is of

utmost importance to a method’s user.

Sensitivity to
Changes of Scale

Tests how robust a method’s results are to changes in input and
output parameters. A low sensitivity to scale changes increases the

validity of results in volatile environments.

Sensitivity to
Erroneous Data

Tests how robust a method’s results are to (random) changes in
some DMUs inputs and outputs. A low sensitivity to erroneous

data increases the validity of results, when data is
subjective/opinion-dependent, based on estimates or exposed to

possible human error.

Sensitivity to
Dominant DMU
Elimination

Tests how robust a method’s results are to deleting a DMU that
lies on a DEA efficiency hyperplane. A low sensitivity to deleting
such DMUs increases the validity of results, especially for industry
comparisons, when maverick DMUs might be part of the DMU set.
Table 3.2: Method comparison metrics.

Implementation of the discriminatory properties metric For the calculation of the
discriminatory power of the methods, two separate approaches will be followed: Initially, the
four methods will be applied in their standard form as described in the literature review.
Afterwards, the cross-efficiency scores will be calculated, only factoring in the peer-appraisal
scores of DMUs with a simple efficiency score of 1. Hereby, the intuition is that when calculating
cross-efficiency scores based on all DMUs, each DMU’s weights are valued equally. However,
all non-efficient DMUs choose their weights based on the DMU(s)’ hyperplane(s) they are
dominated by (Fried et al. 2008). Consequently, counting every non-efficient DMU’s weights in
reality only counts the dominating DMU’s weights over and over again. To abstract from this
behavior, all non-efficient DMUs will be eliminated from the sample for the second approach,
thereby only allowing each hyper-plane to impact the cross-efficiency score once.
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4. Data
4.1 Data collection process

This chapter introduces the reach-out- and response collection process as well as the final set
of respondents and the correlations between inputs and outputs. In short, the mailing lists of
evofenedex, TLN and a third company that wishes not to be disclosed as well as contact data
of previous research in the warehousing sector were used to gather respondents. Additionally,
extensive personal outreach via Linkedin, RSM’s alumni network and online search was con-
ducted. Each contacted individual was introduced to the subject of the study and incentivized
by offering them an individual report of their facility’s performance compared to the compe-
tition. A sample report can be found in appendix C. All questionnaires were administered
through Qualtrics, an online surveying platform, where the survey was accessible in Dutch and
English.

In total, 1,827 individuals were contacted, which resulted in 214 submissions, out of which
1311 were entirely completed and use-able. The respective response rate is 11.7% (all respon-
dents) and 7.2% (use-able respondents), which is lower than the response rates Muilerman
(2001) identifies for studies in the logistics sector. However, Muilerman (2001) was published
before the advent of the internet and is therefore not directly comparable to online-administered
surveys as in this case. Sauermann and Roach (2013) find in their study that the low costs
of surveying with online-tools, has lead to ”oversurveying”, reducing the achievable response
rates below earlier levels.

Additional reasons, possibly explaining the low response rate are:

• The high share of individuals reached out to by the three collaboration companies via
their mailing lists, which naturally is a contact channel to which warehouse managers
devote little attention.

• The non-existence of a database of warehouses in the Netherlands and Belgium, which
requires manual investigation and informal outreach via e.g. Linkedin or cold-calling,
which results in a less convincing first impression on a warehouse manager than e.g. a
bureau of statistics request would have.

• The author’s inability to speak Dutch, which made all forms of personalized contact less
convenient for the respondents and especially cold-calling less feasible.

• The limited time-frame for data-collection of nine weeks, intersected by public holidays,
rendering long-term follow-up or avoidance of busy weeks more difficult as well as ruling
out paper-based mailings, given their long response times.

The three most often cited reasons (aside from not reacting in general) were warehouse
managers being: 1) too busy 2) not allowed to share the required data 3) not interested in
external benchmarking, with the first stated reason accounting for over 90% of reactions.

Detailed description of outreach Given the high share of this thesis’ overall workload
dedicated to data collection, this section will depict the outreach process in more tangible
detail. The subsequent paragraphs may be of special interest for readers, contemplating the

1Out of the 131 complete respondents, 102 were used for the analysis in this thesis. The remaining 29
respondents were eliminated because they employed less than 5 FTEs, making them extreme observations and
therefore hardly comparable to full-size warehouses.
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pursuit of similar research, as for most publications the data-collection is summarized in few
sentences, which does not do the required effort for this topic justice.

In order to contact the 1,827 individuals mentioned above, several methods were used:

1. Three data sets from publications and theses from 2009-2015 were obtained, with infor-
mation dating back to 2004. Over 75% of that contact information was outdated, but
person-by-person Linkedin- as well as online follow-ups made it possible to contact ap-
proximately 70% of respondents via phone or mail, some of which had transitioned into
non-warehouse positions. In combination this method yielded 626 contacts, out of which
432 were reach-able via phone or mail.

2. The author sent 3,173 LinkedIn-network requests to warehouse professionals and site
managers in the Netherlands and Belgium, out of which 643 individuals accepted. Each
of the LinkedIn contacts then received a message including the survey information and
a sample output of the individual report as motivation plus up to three follow-ups in
weekly intervals, if they did not react. Including correspondence with contacts, over
6,000 messages were sent. Minus the overlap with the first method, 528 individuals were
contacted via LinkedIn.

3. Approximately 110 Dutch supply chain master students were asked to inform their per-
sonal network about the study, as connections with a personal background tend to have
the highest conversion. This resulted in 28 new connections.

4. The supply-chain-focused websites logistiek.nl, logistiekProfs.nl and logistiektotaal.nl each
published articles about the study, for which the total view count cannot be established.

These four methods combined yielded 105 of the 131 respondents. 55 of these contacted
individuals were excluded from the response count, as they replied to not be working a
warehouse related function any longer.

5. Evofenedex reached out to 391 members individually and to over 28,000 contacts via a
general knowledge newsletter, a total of four times over the course of 6 weeks, out of
which 284 looked at the survey and 10 filled it out entirely. TLN contacted 575 unique
members, three times, over the same period, resulting in 15 complete respondents. The
third company messaged 35 warehouse managers internally twice, with a response rate of
3%.

Overall, it has to be noted that the broad outreach via several channels, especially using
the mailing lists and digital newspapers, creates noise in estimating the overlap of methods and
thereby might underestimate the actual response rate by multi-counting contacts.

4.2 Response set

Out of the 131 entirely submitted surveys, 29 submissions were eliminated, because the re-
spective companies employed less than 5 FTEs, thus the final response set consists of 102
warehouses. This was done, as De Koster and Balk (2008) and Faber, De Koster, and Smidts
(2013) find very small warehouses to be more efficient than other facilities. Since businesses
of 1-4 individuals are hardly comparable to full-sized warehousing operations (and in their na-
ture extreme observations), they skew the DEA results and, if included, negatively affected the
efficiency comparison.

One can find several guidelines in the DEA literature about the required minimum number of
DMUs for good discriminatory power of the analysis, given homogeneity of the sample (Avkiran

29



2006). This data set fullfils the agressive rule-of-thumb by Dyson et al. (2001) to aim for a
minimum number of DMUs equal to the number of inputs multiplied by the number of outputs
times two, or 32 in this case (4×4×2), while Golany and Roll (1989) threshold recommendation
is only twice the sum of input and output factors, or 16 in this case ((4 + 4) × 2). This issue
will be revisited for the clustering discussion.

Out of the 102 warehouses that comprise the final response-set, 82 are located in the Nether-
lands, 17 in Belgium and 3 in Germany. They store 12 different product categories (all 13
selectable categories, except military/defense), employ over 6,000 FTEs and store 2.2 million
SKUs on over 1.8 million square meters, of which 25% are cold-storage. More details, the size
distributions, and a clustering are provided in the following subsections.

4.2.1 Product categories and industry breakdowns

Each participant was allowed to select up to two product categories that best classify the ware-
house’s products. The 102 warehouses selected 145 categories, with logistics, consumer goods
and groceries/food stated most often, classifying half of the warehouses. Although logistics
exhibits the highest category share, it is also the category which was most often co-selected
together with another product category.

A detailed split of the product categories is provided in figure 4.1.

Figure 4.1: Product category split of warehouses in the sample.

4.2.2 Value chain position and ownership breakdowns

57% of warehouse (58/102) are owned and operated in-house, a third (34/102) is operated
by a third party logistics provider (3PL) in a warehouse facility offering services to multiple
customers and only 10% of warehouses (10/102) are dedicated and operated through a provider.
60% of warehouses (61/102) are wholesale warehouses, shipping to B2B partners, 26% (27/110)
are production warehouses. Facilities are considered production warehouses, if the production
of the products that are stored within the warehouse are on the same premises. This includes
raw material and components as well as storing finished products for further distribution. 14%
of warehouses (14/102) are retail facilities with direct end-customer contact.

For a matrix overview of the two dimensions, see table 4.1.
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Value Chain Matrix In-House 3PL - Dedicated 3PL - Multiple Sum

Production Warehouse 19 0 8 27
Wholesale Warehouse 31 6 24 61
Retail Warehouse 8 4 2 14

Sum 58 10 34 102

Table 4.1: Value chain position and operations provider of warehouses in the sample.

4.2.3 Size breakdowns

For every size metric the average has grown over the past 5 years. The range of warehouse FTEs
increased from 5-312 in 2012 to 5-350 in 2017, floor space (in m2) ranged from 400-275,000 in
2012 and from 500-275,000 in 2017. In appendix D, the change in floor space size between 2012
and 2017 is depicted, by color-coding the size of a warehouse in 2012 and observing its size
development until 2017. Figure 4.3 shows the floor space sizes, without tracking the size shifts
on an individual facility level.

For SKUs and order lines, the relative differences in size were larger across the sample, which
is explainable through the different nature of e.g. an aircraft spare-part warehouse maintaining
stock of all parts over 40 years, versus a fresh-fruit importer, where no item is stored for longer
than 24 hours. The SKU range moved from 100-250,000 in 2012 to 100-400,000 in 2017 and
order lines from 25-55,000 in 2012 to 54-55,000 in 2017. Detailed, graphical representations of
the sample’s size metrics can be found in figures 4.2-4.5.

Figure 4.2: Number of FTEs across the warehouse sample in 2012 and 2017.
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Figure 4.3: Floor space (in m2) across the warehouse sample in 2012 and 2017.

Figure 4.4: Number of SKUs across the warehouse sample in 2012 and 2017.

Figure 4.5: Number of order lines across the warehouse sample in 2012 and 2017.
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Graphical outputs for the automation score input and the output scores of error free %,
order flexibility and special processes can be found in appendix D.

4.3 Clustering of data set

The clustering of warehouses into subsets is done to obtain insights on how efficiency patterns
within industries distinguish themselves from when comparing efficiency across multiple sectors.
Because of the limited number of observations per industry, no universal applicability for these
analyses can be claimed. Nevertheless, this drill-down and the intermediate juxtaposition of
homogeneous DMUs was the most requested feature by participating managers.

Taking into consideration the recommendatios for the minimum number of DMUs in a DEA
analysis in section 4.2, only clusters are formed with approximately 20 or more observations.
This strikes a balance between sufficient discrimination of units and homogeneity of DMUs. One
of the three clusters is a combination of two product categories with comparable operations.

The three clusters are:2

1. Engineering + Construction (21 warehouses)

2. Consumer goods (20 warehouses)

3. Groceries/Food (19 warehouses)

The analyses in chapter 5 will initially be performed for the entire set and then for each of
the clusters individually.

4.4 Correlation of inputs and outputs

The subsequent sections will investigate the correlation between inputs and outputs. The
detailed input and output data can be found in appendix E, descriptive statistics for 2017 in
the tables 4.2 and 4.3. For a DEA model it is desirable to have inputs that are uncorrelated
among each other and outputs that positively correlate with at least one input.

Inputs 2017 FTEs Floor Space (m2) SKUs Automation Score

Minimum 5 500 100 2
Median 30 9.250 4.600 6
Average 59 18.244 21.088 7
Maximum 350 275.000 400.000 16
Std. Dev. 74 32.414 57.393 3

Table 4.2: Descriptive statistics of response set’s inputs 2017.

2Two DMUs selected both categories, engineering and construction, but only count once each for the joint
cluster.
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Outputs 2017 Order Lines
Special
Process
Score

Error Free
% Score

Order Flexibility
Score

Minimum 54 2 1 12
Median 1.200 6 7 22
Average 4.931 6 6 21
Maximum 55.000 10 9 30
Std. Dev. 9.815 2 2 4

Table 4.3: Descriptive statistics of response set’s outputs 2017.

For better readability from this point onwards, the inputs will be referred to as FTEs,
Floor Space, SKUs and Automation, without stating their measurement scale. Respectively,
the outputs will be referred to as Order Lines, Special Processes, Error Free % and Order
Flexibility.

4.4.1 Correlation of inputs among each other

To test the ranking correlation, Kendall’s τ (tau) is calculated for all method pairs. This
method was chosen, instead of Spearman’s ρ (rho). Both are non-parametric methods to test
for ranking correlation, but Kendall’s method is more conservative, exhibits more statistical
robustness and is more easily interpret-able (Arndt, Turvey, and Andreasen 1999). Kendall’s τ
signifies how identical the ranks of two paired populations are. A score of 1 stands for perfect
correlation whereas a score of -1 represents entirely opposite rankings.

Out of the six relevant pairs to check for correlation (all combinations of selecting two of
the four inputs without repetition), only the FTEs & floor space pair (0.47 in 2017 and 0.46
in 2012) shows rank correlations above 0.2 in both years. These correlations are explainable,
because larger facilities usually employ more workforce. As the rest of the input pairs are
less, or not at all, correlated and the model has been tested in the past, no adjustment (input
elimination) to the model is made. The 2017 input correlation coefficients3 can be found in
table 4.4, the 2012 input correlation coefficients in appendix F.

Kendall’s τ 2017 FTEs Floor Space SKUs Automation

FTEs 1
Floor Space 0,47*** 1
SKUs 0,19*** 0,08 1
Automation 0,32*** 0,17** 0,22*** 1

Table 4.4: Input factors’ Kendall’s τ correlation coefficients 2017.

4.4.2 Correlation of outputs among each other

For the six output pairs, none exhibits a rank correlation above 0.2 in both periods. The highest
rank correlation across 2012 and 2017 is error free % and order flexibility, which could indicate
that a warehouse with resilient and effective processes is able to be react flexibly to changes as
well as ship with a high degree accuracy. The number of order lines and order flexibility exhib-
ited the the highest rank correlation of 0.16 in 2017. The output factor correlation coefficients
deem no changes to the model necessary. The 2017 output correlation coefficients are shown
in table 4.5, the 2012 correlations in appendix F.

3All p values in this thesis are indicated as follows: *p < 0.10; **p < 0.05; ***p < 0.01.
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Kendall’s τ 2017 Order Lines
Special

Processes
Error Free

%

Order
Flexibility

Order Lines 1
Special Processes 0,14* 1
Error Free % -0,02 0,04 1
Order Flexibility 0,16** 0,06 0,15** 1

Table 4.5: Output factors’ Kendall’s τ correlation coefficients 2017.

4.4.3 Correlation of inputs with outputs

For the correlation between inputs and outputs, the main criterion to look for is that each output
is at least positively correlated with one input and that negative correlations are minimal,
which signifies an underlying model in which a DMU uses or transforms the selected inputs
into selected outputs.

The results of this study are in line with findings of prior studies. The highest positive
correlation is found for order lines and FTEs, which is explainable, considering that the main
objective of a warehouse is order shipment and employees are hired to perform this task. All
outputs are positively correlated with at least one input in 2012, and only error free % is not
significantly correlated with any input in 2017. No significant negative rank correlations are
observed in either 2012 or 2017. The order of magnitude and sign of all significant correlations
in 2017 is similar to 2012. The 2017 correlation coefficients are shown in table 4.6, the 2012
coefficients can be found in appendix F.

Kendall’s τ
2017

Order Lines
Special

Processes
Error Free %

Order
Flexibility

FTEs 0,45*** 0,13* -0,03 0,1
Floor Space 0,23*** 0,14* -0,01 0,1

SKUs 0,28*** 0,08 0,11 0,1

Automation 0,24*** 0,19** 0,05 0,25***

Table 4.6: Input and output factors’ Kendall’s τ correlation coefficients 2017.
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5. Analysis
5.1 DEA results

Before performing the cross-efficiency calculations, the regular DEA was run to obtain the
DMU’s efficiency scores that limit the weight selection process of the cross-efficiency methods.

5.1.1 DEA constant returns to scale results

Under constant returns to scale assumptions, 26 DMUs are considered efficient in 2017 and 35
in 2012, with average efficiency scores of 0.681 (2017 - standard deviation 0.25) and 0.751 (2012
- standard deviation 0.25). In combination, with the slightly increased minimum efficiency
score (0.235 in 2017 vs. 0.232 in 2012), this indicates a moderate shift towards similar input
and output mixes and less extreme efficiency scores. This transformation leads to a smaller
range of scores and less ”maverick” DMUs that receive unity scores, thereby decreasing the
average cross-efficiency score. Using these scores however, one cannot conclude how warehouse
efficiency itself has developed, as the CRS DEA scores are dependent on the distance from the
efficiency frontier, which in turn is highly dependent on the shape of the PPS itself. Score
distribution plots for both CRS DEAs can be found in appendix G.

Out of the 26 efficient DMUs in 2017, 11 act as peers for 10 or more DMUs1, while other
DMUs (e.g. DMU006 or DMU040), were not used as a peer by any other DMU. This lets one
infer that the operations (the input and output combinations) of the DMUs that are most often
selected as peers are more representative. At the same time, one could consider DMUs with
very few selections as peer ”rogue” DMUs with limited relevance for the rest of submissions:

DMU Number CRS 2017 Peer Selection

DMU006 1,00 1
DMU008 1,00 7
DMU024 1,00 9
DMU027 1,00 19
DMU028 1,00 37
DMU040 1,00 1
DMU041 1,00 4
DMU045 1,00 6
DMU049 1,00 48
DMU050 1,00 38
DMU052 1,00 11
DMU063 1,00 17
DMU066 1,00 15
DMU067 1,00 9
DMU071 1,00 6
DMU098 1,00 51
DMU099 1,00 9
DMU100 1,00 11
DMU104 1,00 10
DMU106 1,00 5
DMU107 1,00 6

1The DMU numbers are based on the 131 DMU data set that still included small (<5 FTEs) warehouses.
Because of this, the numeration exceeds 102, although the analyses were performed for 102 warehouses.
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DMU Number CRS 2017 Peer Selection

DMU108 1,00 1
DMU115 1,00 7
DMU118 1,00 2
DMU125 1,00 1
DMU128 1,00 13

Table 5.1: Efficient DMUs and number of selections as
peers - CRS 2017.

The 2012 CRS peer selection table can be found in appendix H.

5.1.2 DEA returns to scale calculations

Although it was mentioned in the literature review that the cross-efficiency methods will be
run under the CRS assumption, it is still meaningful to study the returns to scale, observed
by the individual DMUs. The main reason why VRS is rejected for the later analysis is its
over-proportional high share of efficient DMUs. Despite cross-efficiency’s properties to break
the tie, even among multiple DMUs, the increased efficiency scores through VRS skew the
cross-efficiency rankings and may lead to inadvertent results such as negative cross-efficiency
scores. Although the implementation of VRS models in cross-efficiency is subject of research,
its extent is limited and still in an early and experimental stage (Lim and Zhu 2015).

This section explores how returns to scale can be evaluated, for which Banker and Thrall
(1992) show that the returns to scale of DMUs can be determined based on the lambdas of
the CRS solution. These lambdas are obtained from solving the primal of the dual linear DEA
program described in section 2.3.1. The lambdas indicate which peers a DMU has selected.
Each DMUj has K lambdas associated with it, one for each DMUk that could be one of DMUj’s
peers. Hence, most lambdas for a given DMUj will be 0, indicating that this DMUk does not
act as a peer. Contrarily, for a DMU that is used as a peer, that lambda will be positive. All
lambdas combined then form the position on the PPS that the DMU is projected to. For an
efficient DMU this means that it uses only itself as a peer and therefore has a sum of lambdas
of 1. As in a CRS model, a DMU’s sum of lambdas is not constrained, DMUj’s possible returns
to scale can be distinguished as shown stated in Fried et al. (2008):

• If
∑K
k=1 λ

∗
jk = 1 for at least one optimal solution, then CRS holds locally at DMUj.

• If
∑K
k=1 λ

∗
jk > 1 for all optimal solutions, then DRS holds locally at DMUj.

• If
∑K
k=1 λ

∗
jk < 1 for all optimal solutions, then IRS holds locally at DMUj.

While this method can be used as an approximation for all DMUs, Banker and Thrall (1992)
prove this theorem only for DMUs on the efficiency frontier. In order to definitively expand
the RTS categorization to all DMUs, Banker, Chang, and Cooper (1996) introduce a linear
program. Its objective function seeks to minimize the sum of lambdas for each DMUj with∑K
k=1 λ

∗
jk > 1 in its optimal CRS DEA solution. In its DEA optimal solution, this would imply

DRS, yet the algorithm checks, whether there are alternative solutions, resulting in the same
efficiency, but with a sum of lambdas equal to 1 (and therefore CRS, rather than DRS). Next to
the sum of lambdas, the objective function for DMUj also incorporates an infinitesimal weight
ε for the slacks, so in the case of two solutions with identical sums of lambdas, the one with
more slacks (s−, s+) is used:
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min
K∑
k=1

λjk − ε
(

N∑
n=1

sj−n +
M∑
m=1

sj+m

)
(5.1)

This is subject to the constraint that all inputs and outputs are identical to the DEA CRS
solution, as well as all lambdas being positive and the sum of lambdas greater or equal to one:

θ∗jxn =
K∑
k=1

xkλjk + sj+n n = 1, ..., N, (5.2)

ym =
K∑
k=1

ykλjk + sj−m m = 1, ...,M, (5.3)

1 ≤
K∑
k=1

λjk, (5.4)

0 ≤ λjk k = 1, ..., K (5.5)

To test, whether IRS in the DEA solution hold (
∑K
k=1 λ

∗
jk < 1), one needs to adjust the

objective function (5.1) in the following way (Cooper, Seiford, and Tone 2007):

max
K∑
k=1

λjk + ε

(
N∑
n=1

sj−n +
M∑
m=1

sj+m

)
(5.6)

Also, the sum of lambdas are constrained to be smaller or equal than 1.

5.1.3 DEA returns to scale prevalence

This section uses the methods introduced in section 5.1.2 to investigate the returns to scale
distribution in the warehouse data set. Both methods introduced above find the same distri-
bution of returns to scale. This leads one to conjecture that given the multi-dimensional PPS
and the high number of DMUs in the sample, the degrees of freedom for a DMU to choose its
peers to reach optimal efficiency are low.

The sum of lambdas for the efficient DMUs in 2017 and 2012 indicate the following returns
to scale:

DMUs’ Returns to Scale 2012 2017

Increasing RTS 25 22
Decreasing RTS 42 54
Constant RTS 35 26

Total Observations 102 102

Table 5.2: Warehouse sample’s returns to scale in 2012 and 2017.

In both years IRS and DRS are found within the sample, although the more recent data
exhibits a higher number of decreasing returns to scale facilities. If one loosens the condition
for constant returns to scale to occur for sums of lambdas between 0.9 and 1.1, this would
increase the number of CRS warehouses by 22 (in reality exactly constant returns to scale of 1
are hardly found). As however, in the next section the RTS will be analyzed in comparison to
warehouse size, the equality constraint (

∑
λ = 1) was chosen for better discrimination among

warehouses.
To convey an idea of the returns to scale in the sample, table 5.3 shows the operationally

most efficient range of inputs for warehouses, i.e. the range below which only warehouses with
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increasing returns to scale were found and above which only warehouses with decreasing returns
to scale were found. This helps to understand, at which scale of inputs warehouses tend to be
most efficient, disregarding the operational strategies they employ:

2012 2017
Optimal Input Ranges Min Max Min Max

FTEs 8 115 10 243
Floor Space 1.500 26.000 1.260 275.000
SKUs 700 250.000 850 17.600
Automation 3 10 4 14

Table 5.3: Range of optimal inputs scales for 2012 and 2017.

Table 5.3 shows that a wide variety of set-ups are possible to achieve optimal scale size,
yet there are thresholds on floor-space, assortment size as well as the level of automation. For
FTEs, almost the smallest and largest facilities were within the optimal range.

5.1.4 Decreasing returns to scale for larger warehouses

In the preceding section, it was shown that all return to scale types are present in the sample,
based on which a range for optimal input size was provided. Also, it could be shown that de-
creasing returns to scale facilities have increased in number and that overall efficient warehouses
have decreased. This section will therefore investigate, where in the data set which returns to
scale occur and whether the trend of increasing warehouse size can explain the observed shift
in RTS over time. Previously, studies found large warehouses to be less efficient than small
warehouses (de Koster and Balk 2008), but one has to distinguish between two factors that may
drive this efficiency gap. First, decreasing returns to scale could be at play, which would make
it impossible for larger warehouses to become CRS efficient. Second, operational inefficiencies
could be the reason that large warehouses are less efficient.

When the returns to scale, obtained through Banker, Chang, and Cooper (1996) method,
are plotted in figure 5.1 with the three inputs FTEs, floor space and SKUs as axes, one can see
the decreasing returns to scale for larger warehouses:

Figure 5.1: Returns to scale compared to input size.

All increasing returns to scale DMUs are found in the vicinity of the origin, while all larger
DMUs exhibit DRS. One warehouse, with relatively large FTE headcount and moderate floor
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space as well as few SKUs is the exception and observes IRS. In the interest of distinguishability,
the axes were cut of at 150 FTEs, 50,000m2 and 80,000 SKUs, which excludes 15 DMUs, 7 of
which with decreasing and 4 with increasing returns to scale. Out of the 4 increasing returns
to scale warehouses, 3 employ very similar input and output mix, with high FTE-counts, but
relatively low other inputs, all with CRS efficiency scores of less than 0.5. Aside from this
particular mix of inputs and outputs, all other combinations are subject to decreasing returns
to scale, which confirms the intuition by scholars in the field.

5.1.5 DEA variable returns to scale

After providing empirical evidence of the DRS for larger warehouses, it is meaningful, to gauge
the magnitude of the resulting scale inefficiency (inefficiency, not attributed to inefficient input
usage, but simply sub-optimal input size) in the sample. Next to operational performance, this
is the other element impacting efficiency. To calculate scale efficiency, one needs to divide the
CRS DEA score of a DMU by its VRS score (Cooper, Seiford, and Tone 2007). Consequently
this section introduces the VRS results.

Under VRS, 46 DMUs are considered efficient in 2017 and 51 in 2012, with average efficiency
scores of 0.781 (2017 - standard deviation of 0.24) and 0.817 (2012 - standard deviation of 0.23).
Also, under VRS it is found that the minimum efficiency score of the sample has increased from
0.239 to 0.248. As with VRS more DMUs are efficient, there are less DMUs that select dominant
peers. Because of this, the absolute number of times a DMU acts as a peer in the VRS case,
compared to CRS, is reduced - but the same DMUs are found to be most often selected as
peers in both cases:

DMU Number VRS 2017 Peer Selection

DMU006 1,00 2
DMU008 1,00 6
DMU023 1,00 2
DMU024 1,00 5
DMU027 1,00 20
DMU028 1,00 21
DMU033 1,00 2
DMU034 1,00 2
DMU040 1,00 17
DMU041 1,00 1
DMU045 1,00 8
DMU049 1,00 25
DMU050 1,00 35
DMU052 1,00 6
DMU055 1,00 2
DMU058 1,00 2
DMU059 1,00 3
DMU061 1,00 1
DMU062 1,00 1
DMU063 1,00 7
DMU064 1,00 1
DMU066 1,00 9
DMU067 1,00 9
DMU071 1,00 4
DMU089 1,00 1
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DMU Number VRS 2017 Peer Selection

DMU091 1,00 5
DMU098 1,00 35
DMU099 1,00 11
DMU100 1,00 2
DMU101 1,00 2
DMU104 1,00 7
DMU105 1,00 1
DMU106 1,00 11
DMU107 1,00 8
DMU108 1,00 1
DMU115 1,00 9
DMU116 1,00 2
DMU117 1,00 1
DMU118 1,00 3
DMU122 1,00 2
DMU123 1,00 3
DMU124 1,00 1
DMU125 1,00 2
DMU126 1,00 2
DMU128 1,00 11
DMU130 1,00 2

Table 5.4: Efficient DMUs and number of selections as
peers - VRS 2017.

The 2012 VRS peer selection table can be found in appendix H.

5.1.6 Inefficiencies of scale

As mentioned above, to understand the extent of scale inefficiencies impacting the efficiency
scores, one draws on the ratio of CRS to VRS efficiency score. The average scale efficiency in
2017 was 0.88 with a standard deviation of 0.17 (0.92 and 0.13 in 2012). The full table can be
found in appendix I. The average CRS-, VRS- and scale efficiency scores for both years are
shown in table 5.5.

Average Efficiency Score CRS DEA VRS DEA Scale Efficiency

2012 0,75 0,82 0,92
2017 0,68 0,78 0,88

Table 5.5: Average DEA efficiency scores by model and scale efficiency scores.

Based on these values, scale inefficiency is a considerable factor in the overall inefficiency of
DMUs. The 0.68 overall CRS efficiency in 2017 is caused by inefficient operations (0.78) and
scale inefficiencies (0.88). Because under VRS, each DMU can choose its own optimal scale,
any VRS inefficiency results from operational aspects. Likewise, the ratio of CRS/VRS reflects
scale efficiency. In 2012, scale efficiency is slightly higher (0.92) and operational efficiency at
0.82. Based on this sample, the inefficiency split between operational and scale inefficiency is
approximately 2:1 ((1-0,78):(1-0,88)), a ratio that has not been computed previously for studies
applying this input-output DEA model. In other words, a third of the warehouses’ inefficiency
in this sample stems from operating at non-efficient scales.
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5.2 Statistical comparison of four cross-efficiency meth-

ods

After analyzing inputs and outputs correlations, DEA results and the returns to scale, the
following sections will investigate the cross-efficiency results under the constant returns to scale
assumptions.

Running the four cross-efficiency methods (one ratio and one classic implementation of Sex-
ton, Silkman, and Hogan (1986), a multiplicative approach following Cook and Zhu (2014) and
Liang et al. (2008) game theory method) on the data set leads to different cross-efficiency score
distributions. All models were run in their benevolent setting, or aim to maximize the peer-
appraisal scores, which makes results most comparable and also follows the market intuition
that competitors maximize their own efficiency given a set of weights and constraints.

While the two Sexton-derived methods resulted in scores for the 2017 data of the same order
of magnitude per DMU (as expected given the similar models), the obtained cross-efficiency
scores by the multiplicative approach are significantly lower (0.360 and 0.362 average for the
first two models, vs. 0.026 for the multiplicative approach with standard deviations of 0.177,
0.181 and 0.111).

Cross-efficiency
2017

Sexton Classic Sexton Ratio Multiplicative
Game

Theory

Minimum Score 0,090 0,087 0,000 0,164
Average Score 0,360 0,362 0,026 0,535

Maximum Score 0,894 0,890 0,911 1,000

Std. Dev. Score 0,177 0,181 0,111 0,219

Table 5.6: Results comparison of cross-efficiency methods 2017.

The game theory approach resulted in the highest average score of 0.535 (standard devia-
tion of 0.219) and finished after 32 iterations. In a preliminary run with 80 warehouses, two
warehouses were found with cross-efficiency scores of 1. This is surprising, as cross-efficiency is
designed to break the tie among efficient DMUs, but as introduced in the literature review, this
method does not follow the classic cross-efficiency path. Rather, it iterates through ”rounds”
in which the DMU find Nash-equilibria for their weights and efficiency scores until those con-
verge over time. Because in the preliminary set, the two DMUs employed mutually exclusive
inputs in their optimal solution (and consequently had zero-weights on all inputs the other
DMU uses), it is conceivable to find two ”efficient” DMUs. Although this did not happen for
the final data-set it poses a limitation to the method.

Cook and Zhu (2014) present a calculatory example with only ten DMUs, in which the two
highest ranked DMUs appear to have efficiencies of 1.000 and 0.999. When recalculating these
values, the MATLAB code used for this thesis found both DMUs from the example to have a
cross-efficiency of one. The author conjectures that because of the pairwise equilibria-search,
two DMUs using different inputs or outputs can both be found to be cross-efficient.

The results of the comparison for the 2012 data can be found in appendix J.

5.2.1 Normal distributions

After the comparison of magnitude and range of the cross-efficiency scores, the normal distri-
bution of scores is tested for, using one-sample Kolmogorov-Smirnov (KS) tests. For all four
cross-efficiency methods, the normal distribution assumption can be rejected at p<0.01. The
KS values, when rounded to 4 decimals were 0.0000 for all four cross-efficiency scores for both
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periods. The score distributions can be inspected in figure 5.2. Most scores of the multiplicative
approach are below 0.01, which most likely is due to the exponential nature of the calculations,
heavily emphasizing efficient DMUs over inefficient ones, which leads to stark score differences
compared to additive DEA calculations.

Figure 5.2: Cross-efficiency score distribution 2017 per method.

The 2012 score distribution per method can be found in appendix J.

5.2.2 Score similarity

After comparing magnitude and distribution of the cross-efficiency scores, it is imperative to
test, whether the four methods result in the same scores, which is done using the Wilcoxon
signed rank (WSR) test that checks whether the median difference between two samples is zero.

The 2012 results at a 0.05 significance level are stated in table 5.7.

WSR Results
2012

Sexton Classic Sexton Ratio Multiplicative Game Theory

Sexton Classic 0
Sexton Ratio 0 0
Multiplicative 1 1 0
Game Theory 1 1 1 0

Table 5.7: Wilcoxon rank test results for cross-efficiency method comparison 2012.

In 2017 the hypothesis that the scores are from the same distribution are rejected for all
pairs, but as evident from table 5.7, this assumption cannot be rejected when comparing both
Sexton methods in 2012. Because of this, the methods are analyzed more deeply.

5.2.3 Ranking similarity

Next to the different scores, the most critical question is whether the methods result in com-
parable rankings. After all, a manager is less interested whether his cross-efficiency score is 0.6
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or 0.7, but where his facility benchmarks and who is best-in-class.
To give an impression of the different rankings, table 5.8 displays a ranking of the Top102

DMUs by cross-efficiency score for the four methods in 2017. DMUs in bold signify that they
are found in the Top10 by all four methods.

Cross-efficiency
Ranking 17

Sexton Classic Sexton Ratio Multiplicative
Game

Theory

Top 1 DMU098 DMU098 DMU067 DMU049
Top 2 DMU050 DMU050 DMU050 DMU098
Top 3 DMU028 DMU028 DMU028 DMU050
Top 4 DMU049 DMU049 DMU027 DMU028
Top 5 DMU104 DMU104 DMU098 DMU104
Top 6 DMU066 DMU066 DMU066 DMU066
Top 7 DMU027 DMU027 DMU104 DMU027
Top 8 DMU067 DMU067 DMU006 DMU067
Top 9 DMU041 DMU041 DMU115 DMU107
Top 10 DMU107 DMU040 DMU040 DMU041

Table 5.8: Top10 DMUs, by cross-efficiency score and method 2017.

The full rankings for 2017 and 2012 can be found in appendix J. It is noteworthy that
already the Top3 are not identical between the methods and 7 DMUs in 2017 and only 5
DMUs in 2012 were ranked in the Top10 by all methods. Still, the two Sexton methods have
very similar rankings, with DMUs’ ranks mostly differing by usually 1-2 places the most. The
evolutionary game theory approach, ranks the Top10 similar to the Sexton approaches (9 out of
10 DMUs constituting the Top10 are the same), whereas the multiplicative approach’s ranking
differs considerably already in the first few DMUs.

Kendall’s τ is calculated for all method pairs3. The 2017 correlations are found in table 5.9,
the 2012 correlations in appendix J.

Kendall’s τ 2017 Sexton Classic Sexton Ratio Multiplicative Game Theory

Sexton Classic 1***
Sexton Ratio 0,96*** 1***
Multiplicative 0,67*** 0,68*** 1***
Game Theory 0,82*** 0,82*** 0,63*** 1***

Table 5.9: Kendall’s τ correlations for cross-efficiency rankings 2017.

The Sexton approaches have a correlation score of over 0.94 in both years, indicating almost
identical rankings. Similarly, Sexton’s methods and the game theory approach correlate with
more than 0.82 in both years. The correlations between the multiplicative approach and the
other three approaches are considerably lower (0.63-0.68).

5.2.4 Correlation of cross-efficiency methods with DEA and super-
efficiency

As a last step, before the cross-efficiency scores are used to study warehouse performance, the
cross-efficiency score distributions are compared to the DEA and super-efficiency scores. This

2Top10 hereby refers to the 10 DMUs that received the highest cross-efficiency score per method
3All p values in this thesis are indicated as follows: *p < 0.10; **p < 0.05; ***p < 0.01.
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is done, to develop a feeling for how well the cross-efficiency rankings resemble the DEA scores
(or super-efficiency scores, where for each DEA-efficient DMU it is calculated, how far from the
PPS this DMU would be, if one excluded it from the sample).

The four CRS cross-efficiency methods that were introduced in the literature review are
included in the comparison. Additionally, the Sexton ratio approach was also implemented,
only using the CRS DEA efficient DMUs for the cross-efficiency computation. This results
in only the DEA-efficient DMUs peer-appraising all other DMUs and therefore avoids that
DEA-inefficient DMUs impacting the cross-efficiency scores.

The results for Kendall’s τ correlations in 2017 are in table 5.10, the 2012 values are almost
identical and can be found in the appendix J.

Kendall’s τ 2017 DEA Super-efficiency

Sexton Classic 0,641*** 0,636***
Sexton Ratio 0,643*** 0,639***
Multiplicative 0,533*** 0,527***
Game Theory 0,8*** 0,795***
Sexton EfficientOnly 0,615*** 0,616***
DEA 1*** 0,954***
Superefficiency 0,954*** 1***

Table 5.10: Kendall’s τ correlation between cross-efficiency, DEA and super-efficiency scores
2017.

These correlations allow three findings: First, out of all cross-efficiency methods, the game
theory method correlates the strongest with DEA and super-efficiency scores. Second, super-
efficiency resembles the DEA score distribution more closely than cross-efficiency, which can
be explained by super-efficiency only changing the DEA efficient DMUs’ scores. Third, the
correlations of the Sexton method only using efficient DMUs are similar to the Sexton method
employing all DMUs as peer-appraisers. This indicates that the choice for only DEA-efficient
DMUs or the entire sample to calculate cross-efficiency weights has little impact on the overall
scores. Hence, for this sample the frequency and weight of the DMUs at the frontier seem to
be relatively balanced. Although it is shown in table 5.1 that certain DMUs act more often
as peers, their relative weight (λ) seems to be lower. Hence, the combination of (frequency as
peer) * (weight as peer) is more equally distributed.

Usage of methods for the hypothesis testing As it was established above that the Sexton
methods and the game theory approach lead to similar rankings and the Sexton approaches
are computationally less demanding, this thesis will perform the hypothesis testing with the
Sexton ratio approach. It resembles the original DEA idea best and does not use a surrogate
constraint. Next to that, as shown in figure 5.2, it observes a less uniform score distribution
than the game theory model, which allows for better discrimination among the most efficient
DMUs. Also, the game theory approach with its limitation, on certain data sets, to result
in two DMUs with unity cross-efficiency scores seems less suitable for industry comparison
with cross-efficiency scoring. Especially considering applications in cluster analysis on multiple
data subsets, mutually efficient DMUs become increasingly likely, given that efficient DMUs
employing mutually exclusive inputs and outputs become more prevalent in smaller samples.

The multiplicative approach is dismissed for this analysis, as the warehouse benchmark
results are most relevant to practitioners and the multiplicative approach’s results of scoring
most DMUs below 0.05 and efficient ones at 0.8 and higher renders a meaningful comparison
very challenging. The biggest problem would be, to infer changes in cross-efficiency scores based
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on changes in inputs, if the relative distances between cross-efficiency scores are so different
in magnitude. A re-basing of solutions would be possible, but required assumptions on how
to best scale scores, which contradicts the cross-efficiency purpose of benchmarking without
external inference.

5.3 Cross-efficiency comparison of warehouse subsets

5.3.1 Cross-efficiency comparison of different industries

The following section analyzes the relationship between warehouse-characteristics, other than
inputs and outputs, and their correlation with cross-efficiency scores.

Initially, it is tested, whether there are differences between the three different clusters (Con-
struction + Engineering, Consumer Goods, Food/Groceries). To achieve this, a Kruskal-Wallis
(KW) analysis is performed to see whether the warehouse cross-efficiency ranks of the clus-
ters’ warehouses are different. This test was chosen, as it does not require the assumption of
normally distributed residuals, works for more than two groups of data of unequal size and is
non-parametric.

Rank 1 is assigned to the warehouse with the highest cross-efficiency score, whereas Rank
102 is assigned to the warehouse with the lowest cross-efficiency score. The two overlapping
DMUs (DMUs that selected product categories of two clusters), were randomly assigned to one
cluster. The test rejects the hypothesis that the three clusters’ ranks originate from the same
distribution with a p value of 0.04 in 2017 and 0.03 in 2012. The detailed test results can be
found in appendix K.

To understand the magnitude of differences among product categories more closely, Wilcoxon
signed rank tests were performed for each cluster against the remainder of the panelists, to see
where and how the ranks differ. Based on this analysis, it becomes evident that solely the con-
struction+engineering group is statistically different (less efficient) from the rest of the sample.
In both years, it observes lower average rankings than both other sectors and the overall sample
at (0.02 p-value in 2017, 0.01 in 2012). Although the other two sectors observe slightly higher
average rankings than the overall sample, those differences are not significant. The detailed
metrics of the clusters’ ranks and the test’s p values for 2017 are in table 5.11, the table for
2012 in appendix K.

Cluster Ranks 2017
Overall
Sample

Construction+
Engineering

Consumer
Goods

Food/
Groceries

Observations 102 20 19 19
Minimum Rank 1 6 2 4
Maximum Rank 102 96 98 101
Average Rank 51,50 65,00 47,74 45,00

Std. Dev. Rank 29,44 28,19 26,44 26,36
WSR vs. Remainder
p-value

0,02 0,54 0,29

Table 5.11: Cluster metrics and Wilcoxon rank test results vs. remaining panelists 2017.

It can by hypothesized that the worse than average cross-efficiency in the construction and
engineering sector is partially attributable to the high prevalence of spare-part warehouses in
this cluster that in their nature store stock for long times and have lower output levels compared
to their size. 5 out of the 20 construction and engineering warehouses are focused on spare-
part operations, while neither consumer goods nor food/groceries have spare-part warehouses
in their cluster.
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5.3.2 Cross-efficiency and value chain position

To analyze whether the value chain position has an impact on efficiency, a Kruskal-Wallis test
was performed. It is found that in 2017 there is no statistical difference between production,
wholesale and retail warehouses. For 2012, the higher than average score is significant at the
5.8% threshold, yet given the low sample size of only 14 retail warehouses this finding should
be verified with a larger data set.

2017 Value Chain’s
Cross-Efficiency

Overall
Sample

Production Wholesale Retail

Observations 102 27 61 14
Minimum Score 0,09 0,09 0,12 0,18

Maximum Score 0,89 0,89 0,87 0,82
Average Score 0,36 0,39 0,34 0,38

Std. Dev. Score 0,18 0,22 0,16 0,17
KW p-value 0,6704

Table 5.12: Kruskal-Wallis test for different value chain positions’ effect on cross-efficiency
scores 2017.

The 2012 value chain position Kruskal-Wallis test result table can be found in appendix K.

5.3.3 Cross-efficiency and ownership type

Similarly to above, in this section, a Kruskal-Wallis test was performed to analyze the impact
of ownership type on cross-efficiency scores. It is found that neither for 2017 nor 2012 there
is a statistical difference between the self-owned, dedicated contracted and multiple contracted
facilities. In both years though, the in-house warehouses observed the highest efficiencies,
while 3PL-operated warehouses were less efficient. At the same time, the scores of both 3PL
groups observed lower standard deviations. Both findings can be explained, as the less efficient
DMUs may be those with a lower degree of operational specialization, as specifically tailored
warehouses are not warranted by most logistic contracts with little continuity:

2017 Ownership’s
Cross-Efficiency

Overall
Sample

In- House
3PL-

Dedicated

3PL-
Multiple

Observations 102 58 10 34
Minimum Score 0,09 0,09 0,21 0,12

Maximum Score 0,89 0,89 0,55 0,58
Average Score 0,36 0,39 0,33 0,33

Std. Dev. Score 0,18 0,22 0,10 0,11
KW p-value 0,8949

Table 5.13: Kruskal-Wallis test for different ownership types’ effect on cross-efficiency scores
2017.

The 2012 ownership type Kruskal-Wallis test result table can be found in appendix K. When
running the same test, but combining dedicated 3PL warehouses and those with multiple clients
into one, the score differences remain insignificant in both years (Kruskal-Wallis p-value of 0.64
in 2017).
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5.3.4 Control variable selection

For the subsequent correlation analyses between the non-nominal variables (inputs, outputs,cold-
storage%) and cross-efficiency, Multiple Linear Regressions (MLR) will be run, weighing the
errors with ordinary least squares. Hoff (2007) find that despite the censored nature of the
observed cross-efficiency score in the interval of ]0;1], OLS predicts ranking for DEA slightly
better than three commonly used alternative models (Tobit regression, Papke-Woolridge ap-
proach, unit-inflated beta model) for regressing factors on cross-efficiency scores.

A crucial part of deciding on the correct regression model is to include the appropriate
control variables. To achieve this, in a first step one regression is run, only using the potential
control variables to decide which are significant. In this first model, value chain position,
ownership type, industry type and cold-storage percentage were used as explanatory variables
for the dependent variable cross-efficiency score. All variables were standardized and the model
run three times, for 2012, for 2017 and for the relative change of scores and variables between
2017 and 2012. The model results are displayed in table 5.14.

MLR Coefficients Control Variables 2012 2017 Change

Intercept 0,27 0,05 0,29
Production Warehouse -0,8* 0 0
Wholesale Warehouse -0,68* -0,07 -0,22
Retail Warehouse 0 0,37 -0,61
Self-Owned 0,42 0,3 0,12
Third-Party - Dedicated 0 0 0,57
Third-Party - Multiple 0,19 -0,08 0
Cold-Storage 0,24** 0,26** 0,05
Automotive 0,04 -0,3 -0,48
Chemicals/Oil/Gas 0,26 0,3 0,09
Construction -0,34 -0,16 0,42
Consumer goods 0,45 0,2 -0,28
Electronics 0,22 0,29 0,22
Engineering -0,15 -0,38 0,05
Groceries/Food 0,16 0,05 -0,02
Household Appliances -0,57 -0,96* -0,18
Logistics -0,26 -0,44 -0,33
Military/Defense 0 0 0
Pharmacy 0,46 0,28 -0,02
Retail (non-food) -0,17 -0,61 -0,55
Textiles 0,51 0,15 -0,28

Adjusted R2 0,02 0,04 -0,01
RMSE 0,99 0,98 1
F-value 1,14 1,24 0,95

Table 5.14: Multiple linear regression results, performed on only control variables.

From these results, one can exclude all variables, except for cold-storage percentage, as
control variables, given that no other variable was significant in 2012 and 2017. Also, the
model fit as measured by R2 (0,02 and 0,04) and F-value (1,14 and 1,24) is low. The lack of
explanatory power can especially be seen from the non-zero intercepts, despite a standardized
dependent variable.

In a next step, the four inputs and four outputs as explanatory variables and cold-storage
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percentage as control variable are used, to gauge the improvement in model fit. The dependent
variable is cross-efficiency and all variables are standardized for comparability of results:

MLR Coefficients 2012 2017 Change

Intercept 0 0 0
Cold-Storage 0,09 0,22*** -0,05
FTEs -0,49*** -0,48*** -0,2**
Floor Space -0,32*** -0,2** 0,05
SKUs -0,34*** -0,26*** -0,54***
Automation -0,44*** -0,55*** -0,68***
Order Lines 0,7*** 0,66*** 0,59***
Special Processes 0,24*** 0,2*** 0,28***
Error Free % 0,06 0,06 0,18**
Order Flexibility 0,23*** 0,1 0,24***

Adjusted R2 0,55 0,53 0,52
RMSE 0,59 0,68 0,69
F-value 14,40 13,70 13,10

Table 5.15: Multiple linear regression results, performed with inputs and outputs, controlling
for cold-storage percentage.

The explanatory fit of the models including inputs and outputs (adjusted R2 of >0.5 and
double digit F-values) has increased by a large degree through including the inputs and outputs.
Also, each of the inputs and outputs is a significant regression coefficient in at least one of the
three analyzed runs (2012, 2017 and relative change of variables and cross-efficiency scores).
Due to the aforementioned standardization of variables, the intercept is zero and henceforth
will not be displayed in model outputs.

For an empirical data-set, the goodness of fit is satisfactory and the results show a significant
relationship between inputs, outputs and cross-efficiency scores. Hence, this model will be used
for subsequent analyses.

5.3.5 Partial correlations and multiple linear regression

The MLR model introduced above allows an understanding of the change in cross-efficiency
score, based on a change in one of the variables. As the values are all standardized, a regres-
sion coefficient of -0.55 (automation and cross-efficiency in 2017) means that a change of the
automation score by one standard deviation, reduces the cross-efficiency score by 0.55 standard
deviations.

An alternative way of assessing the relation between explanatory and dependent variables
is partial correlation. For partial correlation, the correlation between one explanatory- and
one dependent variable is calculated, after having controlled for other model variables. If
one uses Pearson partial correlation, it finds the same p-values as MLR, but returns classic
Pearson correlation coefficients between -1 and 1 (Schroeder and Sjoquist 2011). However, as
the dependent and control variables in this case are not continuous, a partial rank correlation
is given preference over a partial Pearson correlation.

The Spearman ρ partial rank correlation results between cross efficiency and each input,
output as well as cold-storage are found in table 5.16.
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Spearman ρ Partial Correlations 2012 2017 Change

Cold-Storage -0,08 -0,04 0,01
FTEs -0,2** -0,37*** -0,23**
Floor Space -0,46*** -0,43*** -0,14
SKUs -0,64*** -0,78*** -0,3***
Automation -0,61*** -0,66*** -0,74***
Order Lines 0,52*** 0,58*** 0,28***
Special Processes 0,42*** 0,56*** 0,39***
Error Free % 0,32*** 0,23** 0,18*
Order Flexibility 0,26** 0,25** 0,32***

Table 5.16: Spearman’s ρ partial rank correlation between cross efficiency and each individual
model variable, when controlling for all other inputs, outputs and cold-storage.

For this thesis’ hypotheses testing, these correlations are the crucial parameters. However,
the detailed, subsequent analyses will be focused on the MLR results from table 5.15. Because
of the large number of variables in the model and the fact that all significant factors exhibit the
same signs for partial rank correlation as well as multiple linear regression, the MLR coefficients
are given preference, as they indicate the magnitude of impact of explanatory variable changes.
Also, the model fit of the MLR models can be more easily assessed and interpreted than
the combination of multiple partial regression results. Hence, in the following, the reported
coefficients will focus on the regression results and additionally state the ranking correlations
where deemed informative.

5.3.6 Cross-efficiency comparison of cold-storage facilities

Before investigating the inputs’ relationship with cross-efficiency, the control variable cold-
storage is analyzed. Initially, it is tested whether warehouses with any degree of cold-storage
operations rank differently under cross-efficiency than DMUs with no cold-storage.

Using the Wilcoxon signed rank test on the 41 cold-storage DMUs and the 61 non-cold-
storage DMUs, the average rank for cold-storage facilities is 5 ranks better in 2017 than without
cold-storage. Despite the similar standard deviations in both groups, the WSR test attests no
statistically significant difference. In 2012 the rankings were virtually identical, confirmed by
a p-value of 0.89:

Cold-Storage
No Cold-

Storage 2017
Cold-Storage

2017

No Cold-
Storage 2012

Cold-Storage
2012

Observations 61 41 61 41
Minimum Rank 2 1 3 1
Maximum Rank 99 102 99 102
Average Rank 53,59 48,39 51,61 51,34

Std. Dev. Rank 28,71 30,24 29,83 28,86
WSR vs. Remainder
p-value

0,29 0,89

Table 5.17: Wilcoxon test comparison between cold-storage and non-cold-storage DMU ranks.

However, this analysis does not incorporate the percentage of cold-storage yet. In a next
step, the relation between cross-efficiency score and cold-storage percentage (measured as per-
centage of available floor space in m2) is looked at.
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Figure 5.3: Plot of cold-storage percentage and cross-efficiency score.

When looking at figure 5.3, it is difficult to establish a clear idea of the relation between the
two parameters. But running a MLR and controlling for the DEA input and output variables
finds a positive regression coefficient for cold-storage percentage and cross-efficiency. Whether
one looks at all DMUs or only at those with a cold-storage percentage >0%, the regression
coefficient is positive in both years, but only significant in 2017:

All DMUs Cold-Store only
Cold-Storage Regression Coefficient 2012 2017 2012 2017

Cold-Storage Coefficient 0,09 0,2229*** 0,1209 0,1978*

Adjusted R2 0,55 0,53 0,73 0,74
RMSE 0,59 0,68 0,52 0,51
F-value 14,40 13,70 10,20 10,70

Table 5.18: Regression coefficient between cold-storage percentage and cross-efficiency score,
after controlling for inputs and outputs.

Although initially counter-intuitive that labor-intensive cold-storage drives cross-efficiency,
one can conjecture that establishing cold-storage capabilities requires standardized processes
with high adherence to not endanger the products. This operational accuracy might then
translate into overall efficiency.

5.4 Effect of automation on cross-efficiency

After the previous sections explored the variances among the several warehouse characteristics
in relation to cross-efficiency, this section is devoted to analyzing the impact of individual input
factors on cross-efficiency.

The standardized regression coefficients for 2017 are summarized in table 5.19 and discussed
in detail in the next subsections, the 2012 results and coefficients for change of inputs and change
of cross-efficiency can be found in appendix L.
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MLR Coefficients
2017

All DMUs
Construction+
Engineering

Consumer
Goods

Food/
Groceries

Cold-Storage 0,22*** -0,1 0,06 0,29**

FTEs -0,48*** -2,69** -0,72 -0,15
Floor Space -0,2** -0,36 0,07 -0,29

SKUs -0,26*** -0,35* -0,26 -0,18

Automation -0,55*** -0,12 -0,89** -0,66***

Order Lines 0,66*** 2,87** 1,24* 0,69***
Special Processes 0,2*** 0,83*** 0,29 0,16

Error Free % 0,06 0,12 0,41* 0,04
Order Flexibility 0,1 -0,17 0,2 0,26**

Adjusted R2 0,53 0,49 0,52 0,89

RMSE 0,68 0,71 0,69 0,33

F-value 13,70 3,04 3,19 17,90

Table 5.19: Multiple linear regression coefficients of inputs and outputs on cross-efficiency scores
2017.

For the next analyses, it be noted that the adjusted R2 and F-values for the regression
on DMU clusters, in part, exceed the levels observed for the regressions on entire data-set.
This better fit may be explained by the more homogeneous nature of facilities within the same
industry.

5.4.1 Automation’s effect in 2012 and 2017

Automation negatively regresses on cross-efficiency with -0.55 in 2017 and -0.44 in 2012, both
at a 1% significance level. Likewise, the rank correlation between the two variables is -0.61 in
2012 and -0.66 in 2017. This contradicts the assumption made at the beginning of the thesis
that more automation leads to higher efficiency, but could be caused by the fact that larger
warehouses tend to have a higher level of automation but in previous studies were found to be
less efficient than smaller warehouses.

Figure 5.4: Regression of automation on cross-efficiency score, controlling for the other inputs,
outputs and cold-storage.
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5.4.2 Automation change’s effect on cross-efficiency scores

The same negative relation holds true when comparing the change of automation(
Automation Score 2017− Automation Score 2012

Automation Score 2012

)
against the change in cross-efficiency score. The regression coefficient of ∆ automation on ∆
cross-efficiency score between 2017 and 2012 is -0.68.

Figure 5.5: Regression of change in automation score on change in cross-efficiency score.

Hence, automation and cross-efficiency negatively correlate in both years and in the time-
comparison between 2017 and 2012. This finding supports the hypothesis that large warehouses
use more automation, because they could not stay competitive otherwise. Simultaneously, they
are less technically efficient, as they are more likely subject to decreasing returns to scale. This
interpretation would explain why automation is evidently increasingly used, although it does
not seem to positively correlate with cross-efficiency. It is more efficient than the non-automated
set-up at a larger scale, but has a minimum scale threshold before which it is being employed.
Further research is necessary to investigate this conjecture.

5.4.3 Automation cluster analysis

Despite the overall negative correlation between automation and cross-efficiency, there are cer-
tain differences among the different clusters, most notably the groceries group. While the
consumer goods’ average automation score is slightly below the average score (6.58 vs 6.83),
grocery warehouses have a mean automation score of 8.21. Consumer goods had the highest
negative regression coefficient of -0.89 at an alpha of 0.01 and also the highest automation
change, as well as the highest number of DMUs that changed their automation level. One
could hypothesize that automation is rather a symptom than the cause of inefficiency.

The author visited the largest food warehouse in the sample and discussed reasons for au-
tomation investment decisions with the warehouse management team. According to them, the
high level of automation installed in their facility is necessary, because the tens of thousands
perishable units they receive and ship every day could not be handled by purely manual labor
at competitive costs. But even more important, conveyor belts, automated stackers, labeling
machines etc. ensure better quality and higher consistency. In such a sensitive environment,
where slight mistakes render the product obsolete and hygiene regulations dictate process de-
sign, automation technology is the best option. In this particular case, the high quality focus
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and exotic assortment leads to a low cross-efficiency ranking, yet all-manual operations would
likely rank worse.

Because of this, one can conjecture that the reduced cross-efficiency caused by automation is
not a causal relationship, but hints to operational necessities of specific industries and warehouse
sizes.

Automation Statistics
Overall
Sample

Construction+
Engineering

Consumer
Goods

Food/
Groceries

Average Score 2017 6,83 6,95 6,58 8,21

Std. Dev. Score 2017 2,96 2,78 3,03 3,64
Regression Automation &
Cross-efficiency 2017

-0,55*** -0,12 -0,89** -0,66***

Average Automation Score
Change 2012-2017

65% 49% 106% 65%

% of DMUs with Change 84% 75% 95% 89%

Table 5.20: Cluster analysis metrics of automation’s effect on cross-efficiency ranking.

Overall, all sectors increased their average automation scores and almost 85% of facilities
across the entire sample have changed soft- or hardware technology during those 5 years.

5.5 Effect of floor space on cross-efficiency

5.5.1 Floor space’s effect in 2012 and 2017

The negative coefficients that were observed between cross-efficiency scores and automation
are also prevalent for floor space at -0.32 in 2012 at 0.01 significance. The 2017 regression
coefficient is -0.20 (0.05 significance). The rank correlation between the two variables is -0.46
in 2012 and -0.43 in 2017. This also rejects the hypothesis of larger warehouses being more
efficient.

Figure 5.6: Regression of floor space on cross-efficiency score, controlling for the other inputs,
outputs and cold-storage.

Seeing that increasingly large warehouses are built especially for e-commerce applications,
this is not intuitive, but reasons for larger-scale warehouses may lie beyond the scope of op-
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erational warehouse efficiency, for example in assortment availability. The operational ineffi-
ciencies could also be compensated for, by having financial benefits through centralization and
economies of scale in in- and outbound shipment and consolidation of products. A detailed
investigation of this matter however, is beyond the scope of this thesis.

5.5.2 Floor space change’s effect on cross-efficiency scores

Contrary to the automation change, it is observed that floor space change is not significantly
correlated with cross-efficiency. Floor space was the only input or output, whose change is not
correlated with a change in cross-efficiency:

Figure 5.7: Regression of change in floor space on change in cross-efficiency score.

5.5.3 Floor space cluster analysis

In the cluster analysis, it becomes evident, that consumer goods warehouses use marginally more
floor space than the overall sample (21,000m2 against 18,000m2), while construction+engineering
warehouses on average are only 16,000m2 in size. Although the different industry clusters have
diverging floor space correlations, they are not significant. Facilities in the food/groceries sector
have shown the largest average increase in floor space over the past years of +79%, although
only 47% of warehouses changed their size, indicating a very high growth for those warehouses
who did expand. The overall increase in space was 36% over 5 years, which fits the general
observation of warehouses growing in size. Yet, the standard deviation of floor space for the
entire set as well as for the construction+engineering and consumer goods clusters is higher
than average - representing a high dispersion of facility sizes.

Floor Space Statistics
Overall
Sample

Construction+
Engineering

Consumer
Goods

Food/
Groceries

Average Floor Space 2017 18.244 16.136 20.721 19.533
Std. Dev. Floor Space 2017 32.414 20.823 31.770 16.267
Regression Floor Space &
Cross-efficiency 2017

-0,20* -0,36 0,07 -0,29

Average Change Floor Space
12-17

36% 12% 32% 79%

% of DMUs with Change 55% 70% 58% 47%

Table 5.21: Cluster analysis metrics of floor space’s effect on cross-efficiency ranking.
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5.6 Effect of SKUs and FTEs on cross-efficiency

5.6.1 SKUs and FTEs’s effect in 2012 and 2017

The regression coefficients for assortment size and workforce are similar in sign and magnitude
to automation:

MLR Coefficients 2012 2017

SKUs -0,34*** -0,26***
FTEs -0,49*** -0,48***

Table 5.22: Correlation coefficients of SKUs and FTEs with cross-efficiency scores.

5.6.2 SKUs and FTEs changes’ effect on cross-efficiency scores

Analogous to the negative correlations between cross efficiency and SKUs as well as FTEs in the
specific years, the change between 2012 and 2017 also negatively correlates with cross-efficiency
change. In total, 88 DMUs changed assortment and 92 their employee count during the period:

MLR Coefficients Change

Change in SKUs -0,54***
Change in FTEs -0,20**

Table 5.23: Regression coefficients of change in FTEs as well as SKUs and cross-efficiency score
change.

The rank correlation results for 2012, 2017 and the change between 2017 and 2012 show
identical signs and are all significant as well.

5.6.3 SKUs and FTEs cluster analysis

For the SKU analysis it is noteworthy that the standard deviation is larger than the average
number of SKUs for the entire sample as well as all clusters, except consumer goods - indicating
a large variability in assortment size. The construction+engineering cluster hereby grew slowest,
with an average increase in SKUs of 16%, while the overall sample’s assortment grew on average
by 58% and the food assortments even by 143%. Regardless of growth, the groceries cluster has
by far the lowest number of SKUs (4k on average, compared to 21k in the overall sample), most
likely due to the perishable nature of the products eliminating long-stored stock. The overall
sample observes a regression coefficient of -0.26 of SKU count on cross-efficiency score. This
magnitude is also found for the individual clusters, at varying levels of statistical significance:

SKU Statistics
Overall
Sample

Construction+
Engineering

Consumer
Goods

Food/
Groceries

Average Number of SKUs 2017 21.088 53.361 10.336 3.677
Std. Dev. SKUs 2017 57.393 85.000 8.750 3.816
Correlation SKUs &
Cross-efficiency 2017

-0,26*** -0,35* -0,26 -0,18

Average Change SKUs 12-17 58% 16% 37% 143%
% of DMUs with Change 86% 90% 74% 89%

Table 5.24: Cluster analysis metrics of SKUs’ effect on cross-efficiency ranking.
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Similar to the standard deviation/average ratio of SKUs, all groups also observe standard
deviations equal or greater than the average of their FTE headcount. On average, 59 employees
work per facility, with construction and engineering facilities employing most people on average
(78). The regression coefficient between cross-efficiency score and workforce is -0.48 for the
overall sample, and even -2.69 for the construction and engineering sector. 90% of DMUs in
the entire sample observed changes in their FTE-count, with an average increase in FTEs of
32% over the past 5 years. Food and grocery warehouses outgrew the average workforce with
an average increase of 43%.

FTE Statistics
Overall
Sample

Construction+
Engineering

Consumer
Goods

Food/
Groceries

Average Number of FTEs 2017 59 78 61 55
Std. Dev. FTEs 2017 74 103 89 54
Correlation FTEs &
cross-efficiency 2017

-0,48*** -2,69** -0,72 -0,15

Average Change FTEs
2012-2017

32% 7% 25% 43%

% of DMUs with Change 90% 95% 89% 84%

Table 5.25: Cluster analysis metrics of FTE’s effect on cross-efficiency ranking.

The negative correlation of SKUs and FTEs with cross-efficiency is in line with the hypothe-
ses of this thesis, prior research findings and the decreasing returns to scale results.

5.7 Running DEA and cross-efficiency for sectors indi-

vidually

As a last test, the entire DEA and Sexton ratio cross-efficiency models were run with DMUs
from only one cluster at a time, which changes the input and output parameter weights, as the
overall PPS changes. This was done to see, whether choosing more homogeneous DMUs (from
only one industry), would increase the cross-efficiency scores, assuming that competition within
the warehousing sector would force similar facilities to employ similar input and output mixes
to stay competitive. Hence, within one industry most warehouses would ideally be clustered
around the sector’s best practice input and output mix.

Table 5.26 displays descriptive statistics of the cross-efficiency scores per cluster in 2017
(2012 data in appendix M). It is notable that the average and the minimum value per cluster
are higher than in the overall set of DMUs, but standard deviations per cluster are higher as
well, indicating a higher variability of scores. The variability might however be attributable to
the relatively smaller range of observations per cluster.
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Efficiency Scores 2017
Construction+

Engineering
Consumer

Goods
Food/Groceries

Minimum Score 0,29 0,18 0,17

Maximum Score 0,95 0,89 1,00
Average Score 0,60 0,50 0,54

Std. Dev. Score 0,18 0,21 0,21

Observations 20 19 19

Adjusted R2 0,59 0,47 0,92

RMSE 0,64 0,73 0,28

F-value 4,03 2,76 25,40

Table 5.26: Descriptive statistics of the cross-efficiency score distribution for calculations with
individual clusters 2017.

Additionally, the regression analysis for the individual clusters’ cross-efficiency scores and
the input and outputs was performed again, resulting in coefficients of the same sign and order
of magnitude as for running cross-efficiency and the regression on the entire data set. The
adjusted R2 values for the 2012 and 2017 regression models reach higher values (0.47-0.92)
on average for all individual industry runs. Likewise, the F-values are slightly higher for the
individual runs as well. This indicates a better fit of the models, when running the DEA cluster
by cluster, which cannot be explained by smaller sample sizes, as the measures were adjusted
for number of observations. The detailed coefficient tables can be found in appendix M.

As will be discussed in detail in section 6.2, the Sexton ratio method retains its discrimi-
natory power on smaller data-samples and distributes the cross-efficiency scores over a similar
range as when using the entire sample. With the increased models’ fit, one can argue in favor
of using only a smaller subset of DMUs to rank specific industries. However, the industry-only
rankings are not identical to the originally calculated ones. Hence, careful reflection on the
merits and drawbacks of each approach is mandatory - before opting for either.

5.8 Managerial impact on cross-efficiency

This section deviates from the previous ones, in that it tries to explain part of the observed
cross-efficiency deviations by decisions and strategies employed by the warehouse management.
For this purpose, each warehouse manager was asked ten questions about internally and exter-
nally oriented management elements, such as pre-shift meetings, training plans and customer
involvement programs. For each of the questions the respondents could choose the degree to
which the activity was performed in the warehouse from 1 to 5:(1) Never; (2) Rarely; (3)
Sometimes; (4) Frequently and (5) Very Frequently. As these questions were not previously
tested, Horn’s Parallel Analysis (PA) is performed as a first step, to see how many different
concepts are measured through the questions. This method was chosen, given its low sensitivity
to data distribution and its property to exhibit little under- or overestimating of the number
of components (Dinno 2009).
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Figure 5.8: Parallel Analysis for management data 2017.

A Monte-Carlo based PA run of 5,000 iterations with an alpha threshold of 0.05 shows that
only one factor reaches the required significance. As the 2012 management data PA neither
found the second factor to exceed the required significance, it was decided to combine all
measures to one factor. Subsequently, the factor loadings for this construct were tested for
both years.

Factor Loadings 2012 2017

Pre Shift Meetings 0,42 0,60
Individual Training Plans 0,56 0,59
Incentive Programs 0,46 0,63
Strategies to Empower 0,63 0,60
Worker Rotation 0,55 0,45
Internal Information Visibility 0,60 0,53
Shop Floor Walks 0,54 0,60
5S Measures 0,69 0,83
Employee Involvement 0,57 0,68
Customer Involvement 0,40 0,59

Table 5.27: Factor loadings for management impact questions.

Given that these questions are of subjective nature, the lower factor loading in 2012 can be
explained by the warehouse managers guessing the frequency of activities to a higher degree.
The Cronbach alpha of the entire question set is 0.855. As no factor loaded lower than 0.3 and
each of the ten question decreases Cronbach’s alpha when excluded, all ten factors were used
for the final analysis. The descriptive statistics of the combined management score variable can
be found in table 5.28.
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Management Score Statistics 2012 2017

Observations 102 102
Minimum Score 10 12
Average Score 22,5 33,3
Median Score 22,5 34,0
Maximum Score 34 46
Standard Deviation Score 5,9 7,2

Table 5.28: Descriptive statistics for the combined management score variable in 2012 and
2017.

After performing the linear regression, the management score observes a significant negative
regression coefficient, yet at a low magnitude of less than -0.01 in both years. At the same time,
the models’ fit is minimal in both years as can be seen from the very low R2 of 0.04 and 0.03.
The model results and a scatter plot, evident of the low correlation between management score
and cross-efficiency, are found in table 5.29 and figure 5.9.

MLR Coefficients Management 2012 2017

Intercept 0,5*** 0,52***
Management Score -0,0062** -0,0048*

Adjusted R2 0,04 0,03
RMSE 0,18 0,18
F-value 4,27 3,84

Table 5.29: Multiple linear regression coefficients of management score on cross-efficiency scores.

Figure 5.9: Management score and cross-efficiency score of DMUs 2017.

Although the ten questions appear to be measuring one management construct, it has no
bearing on the efficiency of warehouses. More research would be necessary, to devise a measur-
able management construct that explains cross-efficiency to a larger extent. It is noteworthy
that when performing MLR with the cross-efficiency score as dependent variable and the ten
management questions as individual explanatory variables, the continuous improvement frame-
work, 5S, observes the highest positive correlation with cross-efficiency. Likewise, the employee
involvement program score shows the highest negative correlation with cross-efficiency.
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To conclude the management section, a Kendall’s rank correlation analysis is performed,
to see whether the management score correlates with the outputs and the basic warehouse
productivity measures of order lines per employee:

Kendall’s τ Correlation with Management Score 2012 2017

Order Lines 0,03 0,22***
Special Processes 0,05 0,15**
Error Free % 0,24*** 0,18**
Order Flexibility 0,16** 0,3***
Order Lines / FTE -0,05 0,12*

Table 5.30: Kendall’s τ rank correlation coefficients between management score, outputs and
order lines per FTE.

Also for this analysis, significant but low correlations are found between the management
score and the outputs, with order flexibility in 2017 showing the highest coefficient of 0.3. Based
on these results, the management score cannot be closely linked to cross-efficiency or any of
the outputs, but warehouse output and management score are loosely correlated.

5.9 Summary analysis

In this chapter, it was found that variable returns to scale are prevalent in the warehousing
sector and an indication of optimal input size was provided. A split between operational
inefficiencies and scale inefficiency of approximately 2:1 was empirically derived. Furthermore,
it was established that three cross-efficiency methods’ rankings correlate with >0.9, while the
multiplicative approach differed from these three rankings, but also observed a very skewed
score distribution, with few DMUs exhibiting high cross-efficiency scores and over two-thirds
of DMUs with scores below 0.05. Hence, the analyses of this chapter were conducted using the
Sexton ratio-approach. A detailed break-down of the methods’ properties is performed in the
next chapter.

When more closely investigating the three clusters’ (construction + engineering, consumer
goods, food/groceries) cross-efficiency rankings, they do differ compared to each other in 2017,
but not in 2012 and those differences when comparing individual clusters against the remainder
of responses are not statistically significant. Cold-storage warehouses were found to be slightly
more efficient than non-cold-storage warehouses, while value chain position and ownership type
did not impact the cross-efficiency scores.

Moreover, across the entire set and each cluster, it was found that all input factors au-
tomation, floor space, SKUs and FTEs negatively correlate with the cross-efficiency scores in
both years. These results did not change, when running the cross-efficiency models per cluster
individually. The implications for the hypotheses will be discussed in the following chapter.
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6. Hypotheses and method findings
6.1 Hypotheses results

The hypotheses are evaluated based on the overall sample of 102 DMUs. As shown in table 6.1,
the regression coefficients of automation on cross-efficiency scores for the entire sample set are
significant at a 0.01 level for both years and the time-line comparison. The original hypothesis
of a positive correlation was based on the idea that despite being an input, automation might
have a much lower (standardized) negative impact than the other inputs. This could have been
interpreted as automation being the ”input of choice” when wanting to increase inputs and
retain efficiency. The results are supported by the multiple linear regression results and the
partial rank correlations alike.

The hypotheses 1a and 1b that automation and efficiency as well as the change in automation
and the change in efficiency positively correlate have to be rejected. Also, the hypothesis 4a
that floor space and efficiency positively correlate has to be rejected. In all three cases the
observed correlation was negative. The hypotheses 2 and 3 that SKUs and FTEs negatively
correlate with efficiency is supported by this sample. Hypothesis 4b that floor space change
and efficiency change are positively correlated has to be rejected based on the warehouse data
as there was no statistical correlation between the two (refer to table 5.16 for all correlation
coefficients).

A summary of the regression coefficients1 of the inputs, outputs and cold-storage on cross-
efficiency for both time periods and the change over time is provided in table 6.1.

MLR Cross-efficiency Coefficients 2012 2017 Change

Cold-Storage 0,09 0,22*** -0,05
FTEs -0,49*** -0,48*** -0,2**
Floor Space -0,32*** -0,2** 0,05
SKUs -0,34*** -0,26*** -0,54***
Automation -0,44*** -0,55*** -0,68***
Order Lines 0,7*** 0,66*** 0,59***
Special Processes 0,24*** 0,2*** 0,28***
Error Free % 0,06 0,06 0,18**
Order Flexibility 0,23*** 0,1 0,24***

Adjusted R2 0,55 0,53 0,52
RMSE 0,59 0,68 0,69
F-value 14,40 13,70 13,10

Table 6.1: Multiple linear regression coefficients of inputs, outputs and cold-storage on cross-
efficiency scores - 2012, 2017, change ’12-17. The 2012 and 2017 coefficients are based on input
and outputs values, the change coefficients on the relative change of values.

This answers the managerial research question from the beginning. Based on this data set
of 102 warehouses and the applied Sexton ratio cross-efficiency method, all inputs negatively
correlate with cross-efficiency, but floor space exhibits the lowest magnitude, followed by assort-
ment size. Contrary to the conceptual model presented in the methodology part, automation
is negatively correlated with cross-efficiency - so is the number of FTEs.

1All p values in this thesis are indicated as follows: *p < 0.10; **p < 0.05; ***p < 0.01.
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6.2 Cross-efficiency method evaluation

All methods will be scored on all metrics with a score between 1 and 5, with 5 being the
maximum score. This procedure is used, so one can quickly compare methods across single
dimensions, but not intended to be used to compute an overall score per method, as different
situations require different methods and put varying emphasis on particular characteristics. A
recommendation of when to use which method will be provided as well.

• Methodological proximity

Sexton Classic: 3 - The approach is very closely related to the regular DEA, but sums over inputs
and outputs, to linearize the objective function. Yet, the cross-efficiency results of
this data set are only correlated with CRS DEA by approximately 0.6.

Sexton Ratio: 4 - The approach is fully derived from the logic of simple DEA. Yet, the cross-
efficiency results of this data set are only correlated with CRS DEA by approximately
0.6.

Multiplicative: 2 - The approach is based on DEA weights, but employs exponential transforma-
tion of the objective function. The cross-efficiency results of this data set are only
correlated with CRS DEA by approximately 0.5.

Game Theory: 4 - Only the starting point of DEA scores and the idea of comparing DMUs remains
the same, but iterative process and pair-wise optimization are used instead of global
optimization. However, the score-distribution observes the highest correlation with
CRS DEA of all methods (0.8).

• Implementational ease

Sexton Classic: 5 - Simple linear program to be directly implemented with Excel or mathematical
programming tools - almost instant solving time due to linear properties.

Sexton Ratio: 4 - Simple, but non-linear program that solves within ten seconds in this case of 102
DMUs with four inputs and outputs.

Multiplicative: 4 - Program with quadratic growth of constraints, rendering set-up difficult, but
solves within 12 seconds despite thousands of constraints, due to linear properties.

Game Theory: 2 - Iterative nature, plus pairwise comparison requires linear solver to be called
thousands of times, which took over 70 minutes for this model on a quad-core 3.8
GHz CPU.

• Extendability

Sexton Classic: 4 - Given the limited community of DEA scholars in general, a wide variety of
extensions to the model is readily available and tested.

Sexton Ratio: 4 - Given the limited community of DEA scholars in general, a wide variety of
extensions to the model is readily available and tested - the ratio set-up of constraints
should not impair the usage of the extensions.

Multiplicative: 2 - Relatively new model (this thesis used an adapted version of the scale-invariant
one published in 2014), for which possible extensions are mentioned in the original
paper and build on more popular non-exponential models, but only a limited number
of citations can be found in online databases.

63



Game Theory: 3 - Considerable number of publications applying the model (mainly in Asia) and
some papers extending it. Most extensions are co-authored by one or more of the
original authors, but the general game theory approach does find application among
DEA pundits.

• Discriminatory properties As introduced in section 3.4, in the following it will be
analyzed how the cross-efficiency score distribution per method changes, when performing
cross-efficiency for all DMUs compared to only including the CRS efficient DMUs. In table
6.2, the range and standard deviation of cross-efficiency scores for the CRS efficient DMUs
is shown, when performing the cross-efficiency calculations across all DMUs:

Simple Efficient DMUs
- All DMU DEA

Sexton
Classic

Sexton
Ratio

Multiplicative Game
Theory

Average score range 12/17 0,64 0,65 0,92 0,53
Average std.dev. 12/17 0,17 0,17 0,20 0,14
Average kurtosis 12/17 0,20 0,05 2,28 -0,16

Table 6.2: Comparison of cross-efficiency score distributions of simple-efficient DMUs, all DMUs
runs.

In comparison, in table 6.3, one can see the resulting score distributions, when each
cross-efficiency model was run, only including the CRS efficient DMUs as peers:

Simple Efficient DMUs
- Efficient DMU DEA

Sexton
Classic

Sexton
Ratio

Multiplicative Game
Theory

Average score range 12/17 0,63 0,65 0,88 0,36
Average std.dev. 12/17 0,17 0,18 0,20 0,10
Average kurtosis 12/17 -0,34 -0,43 3,01 0,14

Table 6.3: Comparison of cross-efficiency score distributions of simple-efficient DMUs, efficient
DMUs only runs.

For the all-DMU inclusive setup, it has to be noted that all four methods have a large
enough range to compare scores and also standard deviations that allow for sufficient
distribution. But only when looking at the kurtosis, one sees why the Sexton approaches
and the game theory approach are better suited than the multiplicative one - the mul-
tiplicative’s high kurtosis indicates a strong concentration around the mean. Instead of
spreading the simple-efficient DMUs across the cross-efficiency score range, the major-
ity of observations is clustered into one dense area. One issue, not captured here is the
game theory’s propensity to rate up to two DMUs as cross-efficient, which reduces the
differentiating ability of the model.

When running exclusively CRS efficient DMUs in DEA and cross-efficiency models, both
benevolent Sexton approaches retain range and standard deviation, but reduce their kur-
tosis. The multiplicative and game theory approach have very similar range and standard
deviations, but the kurtosis increases for both methods.

Application of ”simple-efficient-DMUs-only” Performing cross-efficiency only with
the CRS efficient DMUs, increased the spread of the cross-efficiency scores across the
range of observations, while retaining a similar standard distribution for the two Sex-
ton approaches. If one performs cross-efficiency solely for tie-breaking reasons, a Sexton

64



model only including efficient DMUs can therefore be worth considering. It has to be
noted though, that the rankings obtained by the two approaches are not identical - giv-
ing a recommendation on which ranking represents reality more accurately is beyond
the scope of this thesis and subject to personal preference. However, practitioners may
contemplate both approaches, before selecting one for their analysis.

Sexton Classic: 5 - Excellent discriminatory properties and, if necessary, with a reverseable secondary
objective, for increased discriminatory options.

Sexton Ratio: 5 - Excellent discriminatory properties and, if necessary, with a reverseable secondary
objective, for increased discriminatory options.

Multiplicative: 2 - Discriminatory properties, but with a very high kurtosis, rendering practical
comparisons difficult.

Game Theory: 4 - Good discriminatory properties and low kurtosis (even negative in the full data
set but with a chance to have one equally efficient pair of DMUs.

• Sensitivity to scale changes DEA as an extreme point method, generally is sensitive
to change of DMUs on the efficiency frontier. A change in the scale of inputs or outputs
for such an efficient unit has implications on DMUs that considered the changed DMU as
an efficient peer. Additionally, other DMUs that were previously dominated by different
peers can switch to using the changed DMU as peer. A non-efficient DMU’s change (given
it does not become efficient afterwards) has only a local effect on that particular DMU.

Because cross-efficiency uses the DEA’s efficiency scores, it therefore logically changes its
scores and ranking based on the DEA outcomes. For this sensitivity analysis, the main
focus is therefore to find the method whose scores change least in the given scenarios.

For the scale sensitivity test, 10% of all inputs were randomly scaled by factor 0.1, 0.2,
0.5, 2, 5 or 10. This can be of special interest in industries with volatile inputs, or models
expressing inputs in prices. For each factor 100 runs were performed per model, except for
the game theory approach, where due to computational reasons, 10 runs were performed.
The average, relative score deviations were then compared (numeric results in appendix
N):

Figure 6.1: Average relative score deviations per method, based on re-scaling of 10% of inputs
by a given factor.
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The two Sexton approaches, and the game theory approach all show low sensitivity to
scale changes. The multiplicative method’s scores change three to four times as heavily
as the other three methods.

Sexton Classic: 5 Highly stable scoring across all scaling factors.

Sexton Ratio: 5 Virtually identical sensitivity to the classic approach. Observes slightly higher
deviations for the 0.1 factor, but lower changes for 0.5 factor.

Multiplicative: 2 Highest deviations of all methods as well as over 30% average changes at factor 2
input changes.

Game Theory: 5 Most stable scoring of all approaches.

• Sensitivity to erroneous entries For the scale sensitivity test, 5%, 10%, 25%, 50%, 75%
and 100% of inputs were scaled by a random value between 75% - 125%. This is supposed
to test for situations such as this thesis, when data is collected through questionnaires
and subject to human error. Depending on consistency checks during the data collection
processes, the required granularity and type of data requested, the received data may
vary in exactness - this test sees how the methods handle such imprecisions. The average,
relative score deviations were then compared (numeric results in appendix N):

Figure 6.2: Average relative score deviations per method, based on adjusting a given percentage
of inputs between 75% - 125%.

Sexton Classic: 5 Lowest score deviations for almost the entire range of adjusted DMU percentages.

Sexton Ratio: 5 Slightly higher score deviations than the classic approach, but almost stable be-
tween 50% and 100% of adjusted DMUs and lowest scores at the end of the range.

Multiplicative: 3 Consistently score deviations twice as high as the other approaches, yet the devi-
ations increase linearly with the share of inputs that changes.

Game Theory: 5 Sensitivity between the two Sexton approaches with a slight increase at 100% of
erroneous entries.

• Elimination of efficient DMUs For the efficient DMU elimination sensitivity test, 1-
6 efficient DMUs were ”eliminated” by setting their outputs to 0 (or close to 0 in the
multiplicative case). This tests for how robust the methods are, e.g. when a DMU is
reclassified (e.g. in this thesis from one cluster to another) and what impact it has on
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the other DMUs. Especially when observing maverick DMUs in a particular data set,
assessing this sensitivity is important, if one aimed to exclude these non-representative
DMUs from analysis. Because of the nature of DEA, eliminating CRS efficient DMUs has
an impact on all DMUs that used the eliminated DMU as peer, hence the cross-efficiency
score differences are expected to be larger than for the other tests. The average, relative
score deviations were then compared (numeric results in appendix N):

Figure 6.3: Average relative score deviations per method, based on eliminating a given number
of simple efficient DMUs.

Sexton Classic: 4 Lowest score deviations of all methods, but 10% score changes already at one
eliminated DMU.

Sexton Ratio: 4 A very similar score development to Sexton Classic.

Multiplicative: 1 Already with one eliminated DMUs scores change by 30% and the deviations reach
almost 100% for six eliminated DMUs.

Game Theory: 3 Similar magnitude of deviations than Sexton’s classic approach, but a less pre-
dictable development.

Table 6.4 summarizes the above mentioned information, containing the rating for each
method for each dimension:

67



Metric
Sexton
Classic

Sexton
Ratio

Multiplicative
Game

Theory

Methodological Proximity to
DEA

3 4 2 4

Implementational Ease 5 4 4 2

Extendability 4 4 2 3

Discriminatory Properties 5 5 2 4

Sensitivity to Changes of Scale 5 5 2 5

Sensitivity to Erroneous Data 5 5 3 5

Sensitivity to Dominant DMU
Elimination

4 4 1 3

Table 6.4: Ratings of cross-efficiency methods across comparison metrics from 1(lowest) - 5
(highest).

A discussion of which method is recommendable in which situation can be found in section
7.2.
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7. Conclusions and discussion
7.1 Warehouse cross-efficiency findings

Based on the 102 warehouses of this thesis’ data set, it was found that all four input factors,
automation (-0.66), floor space (-0.43), assortment size (-0.78) and workforce (-0.37) correlate
negatively with cross-efficiency in 2017. The same orders of magnitude and signs are found
for the 2012 data as well as the change in cross-efficiency scores compared to the change in
inputs. These results are in line with previous research in the warehouse sector that found
smaller warehouses to be more efficient, yet contradicts the main hypothesis of the thesis that
automation and cross-efficiency correlate positively. One possible explanation for this is that
the automation score did not include common technologies found in warehouses such as reach
trucks, racking systems etc. Hence, warehouses relying heavily on classic warehouse setups, with
limited or no automation technology asked for in the survey (among others AGVs, automated
stackers, RFID technology or conveyor belts) can be very efficient, but receive an automation
score of zero. At the same time, when looking at the automation scores at most efficient scale
sizes, low-moderate automation levels are prevalent. Also, as efficiency is calculated as outputs
divided by inputs, an increase in input, ceteris paribus, reduces efficiency.

As for the other input factors, it has to be noted that those are often times impacted by
exogenous strategic decisions made at a corporate level. From a managerial perspective, the
size recommendations found in section 5.1.3 are of relevance, as it was shown in this thesis
that 1/3 of inefficiencies in warehousing stems from scale-inefficiency and 2/3 are attributable
to operational inefficiency. In conjunction with the input and output mix comparison of the
industries, the key learning for practitioners is to consider size as well as the choice of input
and output, without solely focusing on the overall cross-efficiency scores.

Additionally, this thesis established empiric evidence that the warehouse industry exhibits
decreasing returns to scale, making it more difficult for larger warehouses to reach the highest
cross-efficiency ranks, independent of operational performance.

Findings for specific warehouse types include that the cold-storage percentage of floor space
regresses positively on cross-efficiency in 2017, while value chain position and ownership type
do not impact a warehouse’s cross-efficiency significantly.

Among the three industries for which individual analyses were performed, grocery ware-
houses were most efficient (average rank of 45), followed by consumer goods facilities who’s
average ranking of 48 is above the sample’s mean. The construction and engineering sector ex-
hibits significantly lower cross-efficiency scores and consequently an average rank of 65, possibly
caused by its higher share of spare-part warehouses.

When the cross-efficiency methods were run only using a sub-category’s DMUs, the re-
sulting scores were distributed across similar ranges as in the original model, despite higher
homogeneity within one industry. Hence, a similar benchmark with more observations from
one particular category of warehouses could prove to be insightful to understand intra-cluster
differences.

7.2 Cross-efficiency method discussion

When contrasting the four cross-efficiency methods, the two Sexton approaches and the game
theory method beat the multiplicative method across almost all metrics. The game theory
results correlate the highest with DEA results, while the two Sexton approaches are method-
ologically closer to DEA, easier to implement and were 500 times quicker to solve for this data
set. All three methods show low sensitivity to input scale changes, DMU elimination or er-
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roneous data, which only holds partially true for the other two methods. Choosing between
the two Sexton methods depends on the preference of the user and the context of the applica-
tion. While the original method is slightly quicker solvable due to linearity, the original ratio
framework suggested in this thesis approximates DEA methodologically more closely.

The multiplicative model is quickly implementable, but makes interpretation and compar-
ison of the resulting cross-efficiency scores cumbersome, given its large dispersion of scores.
Moreover, it was the least stable implementation in the sensitivity analysis.

One drawback of the game theory method is its property of scoring two DMUs to be mutu-
ally efficient (cross-efficiency scores of 1), if they are both CRS efficient and employ mutually
exclusive inputs in their optimum. While not the case for the original warehouse data set, the
random data transformations during the sensitivity analysis in 10% of runs, resulted in the
game theory method finding two DMUs with cross-efficiency scores of 1. Depending on the
required application, this may eliminate the method from being used. Moreover, its computa-
tional requirements grow faster than quadratic when doubling DMUs, as the number of DMU
pairs increases quadratically, which are then run over a larger number of iterations until all
scores converge, which reduces its applicability in practice.

For all cross-efficiency models, it was found that running them only using the CRS DEA-
efficient DMUs has desirable distribution properties, when focusing on breaking the tie among
unity-efficient entities. Especially the two Sexton model show a wide range of score distributions
and lower kurtosis than when running them with the entire data-set. Depending of the goal of
the cross-efficiency calculation, incorporating only the CRS DEA-efficient DMUs may therefore
be appropriate.

In general, the ratio implementation of Sexton’s approach is the recommendable model, as it
shares all merits of Sexton’s standard, surrogate implementation, but does not rely on constraint
approximations. If time is scarce, or in a setting of very frequent/automatic application of
cross-efficiency benchmarking, the linear Sexton implementation is the method of choice.

7.3 Limitations of study

The limitations of this study arise from three main areas:
First, while a data-set of over 100 warehouses fulfills all DEA minimum DMU requirements,

in a estimated market of ≥10,000 facilities in the Netherlands and Belgium, a larger data-set
would be preferable. Especially industry clustering and tailored comparisons are limited by the
sample size. Next to that, the temporal analysis was done using recollection from respondents
about the warehouse’s state in the past. A true panel survey, preferably performed over a
longer time span than five years, could help in more accurately grasping trends in warehousing
performance.

Second, the model was based on a pre-tested warehouse questionnaire, which was modified
to capture warehouse automation more granularly. A combination of existing questions, expe-
rience and personal judgment was used to develop the automation section of the questionnaire,
because a holistic framework to capture mutually exclusive, collectively exhaustive automation
components is not available, which limited the automation scoring precision.

Third, the current research on cross-efficiency with variable returns to scale is at a too
early stage to circumvent all problems that arise during application, to reliably use VRS cross-
efficiency yet. As the DMUs in the sample exhibit variable returns to scale, which were not
considered for the cross-efficiency computations, the obtained scores in this thesis are biased
by ignoring the scale (in)efficiencies of DMUs.
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7.4 Further research

Analogous to the limitations of the study, further research is needed on the constituting com-
ponents of warehouse efficiency, such as specific product categories, value chain positions, and
relevant inputs and outputs. Especially as the industry is evolving at a quick pace, a bi-annually
efficiency survey would be of interest for researchers and professionals alike. Alternatively, a
web-hosted solution could be programmed to provide warehouse managers with an interface
to provide operational data and have their warehouse ranked through the cross-efficiency code
that is made publicly available by the author. This way, warehouse data could continuously be
gathered, while participants receive results instantly.

As mentioned above, a framework to entirely capture and score warehouse automation is
not available. Advances in that area in times of AGVs, virtual reality, deep learning and
autonomous logistics should prove to be fruitful. Another aspect that finds itself underrep-
resented in current publications is the effect of general management practices on warehouse
efficiency. There are frameworks for specific areas such as lean-management implementations,
but no framework to score a top-level management approach on all dimensions in respect to
operational performance of warehouses.

From a methodological perspective, a future focus on VRS cross-efficiency implementations
would be highly welcome to increase cross-efficiency acceptance, by removing a central limita-
tion of current models. Further topics with development potential are the implementation of
the temporal dimension into cross-efficiency as well as a framework for choosing the right type
of inputs and outputs to achieve DEA models with the highest explanatory power.
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Andrejić, Milan, Neboǰsa Bojović, and Milorad Kilibarda (2013). “Benchmarking distribution

centres using Principal Component Analysis and Data Envelopment Analysis: A case study
of Serbia”. In: Expert Systems with Applications 40.10, pp. 3926–3933. issn: 09574174. doi:
10.1016/j.eswa.2012.12.085.

Arndt, Stephan, Carolyn Turvey, and Nancy C. Andreasen (1999). “Correlating and predicting
psychiatric symptom ratings: Spearman’s r versus Kendall’s tau correlation”. In: Journal of
Psychiatric Research 33.2, pp. 97–104. issn: 0022-3956. doi: http://doi.org/10.1016/
S0022-3956(98)90046-2.

Avkiran, Necmi (2006). “Productivity Analysis in the Service Sector with Data Envelopment
Analysis”. In: SSRN Electronic Journal. doi: 10.2139/ssrn.2627576.

Balk, Bert M. (2017). “What is Cross-Efficiency?”
Banaszewska, Agata, Frans Cruijssen, Wout Dullaert, and Johanna C. Gerdessen (2012). “A

framework for measuring efficiency levels - The case of express depots”. In: International
Journal of Production Economics 139.2. Compassionate Operations, pp. 484–495. issn:
0925-5273. doi: http://dx.doi.org/10.1016/j.ijpe.2012.05.003.

Banker, Rajiv D., Hsihui Chang, and William W. Cooper (1996). “Equivalence and imple-
mentation of alternative methods for determining returns to scale in data envelopment
analysis”. In: European Journal of Operational Research 89.3, pp. 473–481. issn: 0377-2217.
doi: http://dx.doi.org/10.1016/0377-2217(95)00044-5.

Banker, Rajiv D., Abraham Charnes, and William W. Cooper (1984). “Some Models for Esti-
mating Technical and Scale Inefficiencies in Data Envelopment Analysis”. In: Management
Science 30.9, pp. 1078–1092.

Banker, Rajiv D. and Robert M. Thrall (1992). “Estimation of returns to scale using data
envelopment analysis”. In: European Journal of Operational Research 62.1, pp. 74–84. issn:
0377-2217. doi: http://dx.doi.org/10.1016/0377-2217(92)90178-C.

Bogetoft, Peter (2000). “DEA and Activity Planning under Asymmetric Information”. In: Jour-
nal of Productivity Analysis 13.1, pp. 7–48. issn: 1573-0441. doi: 10.1023/A:1007812822633.

Bogetoft, Peter and Lars Otto (2011). Benchmarking with DEA, SFA, and R. Ed. by Martina
Bihn. Vol. 2011. International Series in Operations Research & Management Science 157.
Springer New York. Chap. Efficiency Measures, pp. 23–55. isbn: 978-1-4419-7960-5 978-1-
4419-7961-2. doi: 10.1007/978-1-4419-7961-2\-2.

Bogue, Robert (2016). “Growth in e-commerce boosts innovation in the warehouse robot mar-
ket”. In: Industrial Robot: An International Journal 43.6, pp. 583–587. doi: 10.1108/IR-
07-2016-0194.

Bowersox, Donald J., David J. Closs, and M. Bixby Cooper (2013). Supply Chain Logistics
Management. McGraw-Hill. isbn: 9780071326216.

Chambers, Robert G., Yangho Chung, and Rolf Färe (1996). “Benefit and Distance Functions”.
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A Abbreviations

Abbreviation Definition

AHP Analytical Hierarchy Process
ANOVA Analysis of Variance

BCC Banker, Charnes and Cooper
C+E Construction and Engineering
CCR Charnes, Cooper and Rhodes
CRS Constant Returns to Scale
DEA Data Envelopment Analysis
DMU Decision Making Unit
DRS Decreasing Returns to Scale
EU European Union

ERP Enterprise Resource Planning
FDH Free Disposal Hull
FTE Full Time Employee
GDP Gross Domestic Product
IO Input Orientation
IRS Increasing Returns to Scale
KS Kolmogorov-Smirnov
KW Kruskal-Wallis

MATLAB Matrix Laboratory
MLR Multiple Linear Regression
OLS Ordinary Least Squares
PA Parallel Analysis

PCA Principal Component Analysis
PPS Production Possibility Set
RTS Returns to Scale
SFA Stochastic Frontier Analysis
SKU Stock Keeping Unit
TLN Transport en Logistiek Nederland

TOPSIS Technique of Order Preference by Similarity to the Ideal Solution
VRS Variable Returns to Scale
WMS Warehouse Management Software
WSR Wilcoxon Signed Rank Test
3PL Third Party Logistics Provider

Table 2: List of abbreviations.
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Warehouse Efficiency Survey 2017 NL & BE - Bosch 

Q1.1 

Q1.2 In cooperation with TLN and the Erasmus University Rotterdam (Christian Kaps and Prof. René de 

Koster), evofenedex has started research to evaluate the effect of technological developments on 

warehouse efficiency. We ask you to participate in this research by filling out this survey.  What is in it for 

you?  When you participate, you will receive a personalized result of our study, in which we benchmark & 

rank your warehouse’s operational efficiency against the entire set of warehouses as well as an analysis 

how it competes directly against facilities in your industry. The report will include your operation’s overall 

efficiency as computed through the data you provide & the analysis of individual inputs/outputs (e.g. 

number of people, order lines, etcetera). For a sample benchmark click here.  How can you participate? To 

help with the study and receive the report, please fill out this survey. Filling it out takes 10-15 minutes and 

focuses on high level operations data of your warehouse. The survey should be completed by the 

(assistant) logistics manager of your warehouse facility. The questionnaire focuses on operational changes 

in your facility during the last 5 years.  Each warehouse location of your organization can participate 

separately.  If you have any questions or feedback, please contact Christian.Kaps@student.eur.nl.   Thank 

you for your participation René de Koster Christian Kaps On behalf of EUR, evofenedex & TLN     

Q2.1 Questions to be answered by the (assistant) logistics/warehouse manager 

Q2.2 Company / warehouse information 

Company name (1) 

Name of location (2) 

Address of warehouse (3) 

Zipcode and city (4) 

Q2.3 Personal information 

Name (1) 

Function (2) 

Telephone number (3) 

E-mail address (report will be sent to this address) (4) 

B Survey questionnaire
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Q2.4 Which product category categorizes your warehouse best? (max 2 selections) 

 Automotive (1) 

 Chemicals/Oil/Gas (2) 

 Construction (3) 

 Consumer goods (4) 

 Electronics (5) 

 Engineering (6) 

 Groceries/Food (7) 

 Household appliances (8) 

 Logistics (9) 

 Military/Defense (10) 

 Pharmacy (11) 

 Retail (non-food) (12) 

 Textiles (13) 

 Other, please specify: (14) ____________________ 

 

Q2.5 Which of the following options describes the position of your warehouse in your company's value 

chain best? 

 Production warehouse (1) 

 Wholesale warehouse (2) 

 Retail warehouse (3) 

 

Q2.6 Is your warehouse operated by a logistics service provider? 

 Yes - this warehouse is public, offering services to multiple customers (1) 

 Yes - this warehouse is dedicated/contracted mainly for one specific customer (2) 

 No (3) 

 

Q3.1 How many employees including temporary workers are active in your warehouse at the moment and 

how many were active 5 years ago (indicated as FTE - full time equivalent; direct - active on the warehouse 

floor; indirect - not operational on the floor)? 

 2017 (1) 5 years ago (2) 

Direct FTEs (1)   

Indirect FTEs (4)   

 

 

Q3.2 What is the floor space of the warehouse at the moment including mezzanines (in m²)? And what was 

it 5 years ago? 

 2017 (1) 5 years ago (2) 

Floor Space (in m²) (1)   

 

 

Q3.3 What floor space percentage of the warehouse at the moment consists of cold storage and what was 

that  percentage 5 years ago? 

 2017 (1) 5 years ago (2) 

% Cold storage (1)   
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Q4.1 Approximately how many unique article numbers (Stock Keeping Units) are simultaneously stored in 

your warehouse at the moment on average and how many were stored 5 years ago? 

 2017 (1) 5 years ago (2) 

SKUs (1)   

 

 

Q4.2 What is the average number of shipping order lines (outgoing order lines) per day at the moment and 

how high was this number 5 years ago? 

 2017 (1) 5 years ago (2) 

Order lines per day (1)   

 

 

Q4.3 What percentage of shipping order lines was error-free on average over the last year and how many 5 

years ago? (examples of errors are: faulty quantities, deliveries not on time (too early or too late), packing 

mistakes, product errors, incorrect component/modules. Select only one field per period) 

 Error-free order lines Error-free order lines 

 2017 (1) 5 years ago (1) 

No information available / not 
tracked (1) 

    

Below 90% error-free order 
lines (2) 

    

90-95% error-free order lines 
(3) 

    

95-97% error-free order lines 
(4) 

    

97-98% error-free order lines 
(5) 

    

98-99% error-free order lines 
(6) 

    

99-99.5% error-free order 
lines (7) 

    

99.5-99.9% error-free order 
lines (8) 

    

Over 99.9% error-free order 
lines (9) 

    

 

 

  

80



Q5.1 Besides the standard processes like handling incoming shipments, visual inspection, storage and 

order picking, which occur in all warehouses, additional special processes may be performed as well. 

Which of the following special processes are performed at the moment by your warehouse? Which were 

also performed 5 years ago? (check all that apply) 

 Special processes Special processes 

 2017 (1) 5 years ago (1) 

Cross-docking / 
Transshipment (1) 

    

Transport planning (2)     

Internal product movements 
(relocating stock) for 

optimization (3) 
    

Re-packing / sealing of 
products (4) 

    

(Re)coding of products (5)     

Quality control of received 
products (6) 

    

Adding (promotional) material 
(7) 

    

Receiving and processing 
customer returns / return 

logistics (8) 
    

Pricing (9)     

Assembly (10)     

Other special processes not 
mentioned yet, namely (11) 

    

 

 

Q5.2 Which of the following automated systems were already used to support the processes in the 

warehouse 5 years ago? (Indicate the number of units of the selected systems where applicable) 

 Automated Storage/Retrieval system (# cranes) (1) ____________________ 

 Mini-load system (# cranes) (2) ____________________ 

 Flow racks (3) 

 Conveyor belts (# meters) (4) ____________________ 

 Automated sorter (# output lanes / chutes) (5) ____________________ 

 Automated packing/labelling machine  (# machines) (6) ____________________ 

 Automated box stacker  (# stackers) (7) ____________________ 

 Automated guided vehicles   (# vehicles) (8) ____________________ 

 Robots   (# robots) (9) ____________________ 

 Horizontal/vertical carousel or elevator storage module   (# units) (10) ____________________ 

 Multi-deep storage of pallets/totes with gantry crane or conveyors (11) 

 Radio Frequency ID  technology (12) 

 Augmented reality technology (13) 

 Automated process gamification (15) 

 Others, for example: (14) ____________________ 
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Q5.3 Which new automated systems were added to support the processes in the warehouse  during the 

last 5 years ? (Indicate the number of units of the selected systems where applicable) 

 Automated Storage/Retrieval system (# cranes) (1) ____________________ 

 Mini-load system (# cranes) (2) ____________________ 

 Flow racks (3) 

 Conveyor belts (# meters) (4) ____________________ 

 Automated sorter (# output lanes / chutes) (5) ____________________ 

 Automated packing/labelling machine  (# machines) (6) ____________________ 

 Automated box stacker  (# stackers) (7) ____________________ 

 Automated guided vehicles   (# vehicles) (8) ____________________ 

 Robots   (# robots) (9) ____________________ 

 Horizontal/vertical carousel or elevator storage module   (# units) (10) ____________________ 

 Multi-deep storage of pallets/totes with gantry crane or conveyors (11) 

 Radio Frequency technology (12) 

 Augmented reality technology (13) 

 Automated process gamification (15) 

 Others, for example: (14) ____________________ 

 

Q5.4 What type of information system does the warehouse make use of at the moment and which type was 

used 5 years ago? (a standard system is comprised of less than 20% tailor-made software. Select only one 

field per period) 

 Information system Information system 

 2017 (1) 5 years ago (1) 

No information system used 
(e.g. Excel or paper-based 

tracking) (1) 
    

A standard ERP warehouse 
module (2) 

    

A standard ERP warehouse 
module with more than 20% 

customization (3) 
    

A standard WMS (Warehouse 
Management System) 

package (4) 
    

A standard WMS package 
with more than 20% 

customization (5) 
    

A tailor made/customized 
system (6) 
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Q5.5 Please indicate how you perceive your warehouse's performance at the moment compared to that of 

competitors, when facing the situations mentioned below. 

 

Much 
worse than 
competition 

(1) 

Worse than 
competition 

(2) 

Equal to 
competition 

(3) 

Better than 
competition 

(4) 

Much 
better than 
competition 

(5) 

Not 
Applicable 

(6) 

Handling 
fluctuations in 

order 
quantities (1) 

            

Handling 
alterations in 

customer 
orders 

(number/type 
of SKU) (2) 

            

Expediting 
specific orders 
at customer's 
request (3) 

            

Adding new 
SKUs to the 

assortment (4) 
            

Implementation 
of IT changes 

(5) 
            

Handling labor 
requirement 

fluctuations (6) 
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Q5.6 Please indicate how you perceived your warehouse's performance 5 years ago compared to that of 

competitors, when having faced the situations mentioned below. 

 

Much 
worse than 
competition 

(1) 

Worse than 
competition 

(2) 

Equal to 
competition 

(3) 

Better than 
competition 

(4) 

Much 
better than 
competition 

(5) 

Not 
Applicable 

(6) 

Handling 
fluctuations in 

order 
quantities (1) 

            

Handling 
alterations in 

customer 
orders 

(number/type 
of SKU) (2) 

            

Expediting 
specific orders 
at customer's 
request (3) 

            

Adding new 
SKUs to the 

assortment (4) 
            

Implementation 
of IT changes 

(5) 
            

Handling labor 
requirement 

fluctuations (6) 
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Q5.7 As the final question, please indicate at which frequency the following activities are currently 

performed in your warehouse at the moment and how often they were performed 5 years ago. 

 2017 5 years ago 

 Never (1) 
Rarely 

(2) 
Sometimes 

(3) 
Frequently 

(4) 

Very 
Frequently 

(5) 

Never 
(1) 

Rarely 
(2) 

Sometimes 
(3) 

Frequently 
(4) 

Very 
Frequently 

(5) 

Pre-shift 
meetings with 

shop-floor 
workers (1) 

                    

Individualized 
training plans 

(2) 
                    

Incentive 
programs for 

employees (3) 
                    

Strategies to 
empower 

teams/individu
als and hold 

them 
accountable 

(4) 

                    

Worker 
rotation 
through 

different jobs / 
areas (5) 

                    

Internal 
information 
visibility / 

productivity 
benchmarks 

(6) 

                    

Scheduled 
shop floor 
walks by 

management 
(7) 

                    

5S / 
Continuous 

improvement 
measures (8) 

                    

Employee 
involvement / 
suggestion 
program (9) 

                    

Customer 
involvement / 
suggestion 

program (10) 
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Q5.8 You have reached the end of the survey. Would you like to receive a personalized efficiency 

benchmark of your warehouse, based on the results of this study? (Reports will be sent in June/July to the 

provided e-mail address) 

 Yes (1) 

 No (2) 
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Warehouse Efficiency Survey 2017 NL & BE

2017 Efficiency 2012 Efficiency

67%

44%

Company Average

64%

48%

Company AverageCompany Logo Company Logo

I: # FTEs

I: WH Size

I: Automation

I: SKUs

O: #Order lines

O: Special
processes

O : %Error-free

O: Order
flexibility

I: # FTEs

I: WH Size

I: Automation

I: SKUs

O: #Order lines

O: Special
processes

O : %Error-free

O: Order
flexibility

67%

44%

Company Average

Overall comparison
Rank: XX/YY

I: # FTEs

I: WH Size

I: Automation

I: SKUs

O: #Order lines

O: Special
processes

O : %Error-free

O: Order
flexibility

Company Logo

Industry comparison
Rank 2017: XX/YY
Rank 2012: xx/yy

2017 Efficiency 2017 Input/Output

Industry input/output 
comparison

2017 2012

Contact: Christian.Kaps@student.eur.nl

C Sample report
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D Input and output score distribution of sample

Figure 1: Automation scores across the warehouse sample in 2012 and 2017.

Figure 2: Floor space clusters across the warehouse sample in 2012 and how warehouses have
changed between clusters until 2017.

Figure 3: Error free % across the warehouse sample in 2012 and 2017.
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Figure 4: Order flexibility scores across the warehouse sample in 2012 and 2017.

Figure 5: Special process scores across the warehouse sample in 2012 and 2017.

E DEA input and output tables

DMU Inputs 2017 FTEs Floor Space SKUs Automation

DMU001 64 14.499 4.600 7
DMU002 16 2.400 2.500 7
DMU003 22 3.000 5.000 14
DMU004 53 1.500 5.600 7
DMU005 135 20.000 1.200 5
DMU006 40 1.050 950 8
DMU007 90 14.000 5.000 14
DMU008 240 45.000 250 14
DMU010 170 4.000 5.300 11
DMU012 22 15.000 2.400 6
DMU014 100 16.000 50.000 9
DMU017 41 59.000 23.760 7
DMU019 16 5.800 37.000 7
DMU020 45 8.000 15.000 8
DMU022 18 8.000 350.000 8
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DMU Inputs 2017 FTEs Floor Space SKUs Automation

DMU023 100 20.000 3.500 10
DMU024 31 34.000 500 6
DMU026 10 5.700 1.850 7
DMU027 12 500 200 7
DMU028 6 1.500 2.200 2
DMU030 23 8.140 12.000 11
DMU033 69 7.500 40.000 8
DMU034 19 5.000 6.000 12
DMU037 70 18.000 1.000 6
DMU040 18 5.000 4.000 5
DMU041 14 5.000 712 4
DMU042 45 15.000 3.360 3
DMU043 14 10.000 950 4
DMU044 18 2.500 4.000 5
DMU045 5 2.500 250 4
DMU046 52 275.000 1.600 5
DMU047 36 9.600 1.800 5
DMU049 52 4.000 5.500 6
DMU050 7 6.600 1.253 3
DMU051 50 3.600 22.000 5
DMU052 295 90.000 60.000 5
DMU053 15 2.500 2.200 5
DMU054 17 12.000 5.000 5
DMU055 38 15.000 70.000 8
DMU056 60 8.000 4.500 8
DMU058 25 10.000 2.000 6
DMU059 11 7.000 10.000 8
DMU060 313 52.000 203.932 13
DMU061 40 6.634 850 9
DMU062 60 8.000 3.500 11
DMU063 32 4.000 400.000 4
DMU064 25 20.000 850 3
DMU065 162 10.000 9.000 10
DMU066 6 1.910 636 5
DMU067 14 1.280 500 7
DMU068 17 7.500 9.100 5
DMU069 45 16.500 2.600 7
DMU070 27 15.000 75.500 8
DMU071 5 1.500 700 5
DMU072 90 37.000 5.000 16
DMU073 103 50.000 1.500 8
DMU074 15 12.600 20.000 8
DMU076 64 18.000 5.000 7
DMU077 25 6.000 14.000 10
DMU080 13 10.000 5.000 5
DMU081 11 7.500 6.000 6
DMU082 23 8.000 10.000 5
DMU083 19 10.000 650 9
DMU086 13 3.000 4.300 4
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DMU Inputs 2017 FTEs Floor Space SKUs Automation

DMU087 243 55.000 1.520 6
DMU089 260 19.000 115.000 8
DMU090 10 26.000 62.000 5
DMU091 251 17.500 110.000 7
DMU093 120 50.000 2.600 8
DMU094 89 4.515 28.033 7
DMU096 19 2.400 17.600 7
DMU097 95 12.000 7.000 4
DMU098 16 2.000 900 2
DMU099 53 30.000 2.600 2
DMU100 11 2.550 2.780 3
DMU101 17 1.260 18.000 9
DMU102 180 19.000 7.000 6
DMU103 29 9.500 12.000 5
DMU104 9 5.000 1.000 2
DMU105 35 8.000 3.600 5
DMU106 13 1.900 19.000 4
DMU107 6 1.400 1.100 3
DMU108 15 1.885 1.500 3
DMU109 40 7.200 32.500 9
DMU111 14 1.500 25.000 7
DMU113 26 9.000 12.000 5
DMU114 70 13.000 4.600 4
DMU115 5 2.500 6.000 5
DMU116 38 13.500 3.200 14
DMU117 40 7.000 1.673 5
DMU118 6 4.000 10.000 8
DMU119 13 10.000 2.128 5
DMU122 33 19.000 500 5
DMU123 17 14.000 1.500 6
DMU124 40 37.000 20.000 8
DMU125 9 15.000 100 6
DMU126 350 140.000 25.000 15
DMU127 97 50.000 3.000 9
DMU128 270 34.000 6.500 11
DMU129 27 35.000 16.000 6
DMU130 83 45.000 12.000 7
DMU131 48 28.000 2.500 6

Table 3: DEA input table 2017.

DMU Inputs 2012 FTEs Floor Space SKUs Automation

DMU001 94 14.499 4.400 6
DMU002 20 1.600 2.000 8
DMU003 15 2.500 4.000 9
DMU004 32 1.200 4.000 7
DMU005 105 12.000 700 5
DMU006 6 450 200 7
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DMU Inputs 2012 FTEs Floor Space SKUs Automation

DMU007 115 14.000 3.500 10
DMU008 165 30.000 175 7
DMU010 70 1.200 2.000 10
DMU012 17 15.000 2.200 6
DMU014 120 12.000 60.000 4
DMU017 47 59.000 33.480 6
DMU019 16 5.800 25.000 7
DMU020 36 8.000 12.000 4
DMU022 12 4.000 250.000 7
DMU023 110 20.000 4.000 7
DMU024 22 24.000 300 3
DMU026 9 5.700 1.590 7
DMU027 7 400 200 6
DMU028 8 3.000 2.500 2
DMU030 30 5.740 14.000 4
DMU033 32 4.000 18.000 2
DMU034 12 5.000 4.500 12
DMU037 60 13.000 1.000 5
DMU040 10 4.750 3.000 4
DMU041 14 500 847 7
DMU042 31 9.600 2.500 3
DMU043 10 5.000 300 4
DMU044 11 1.000 2.500 4
DMU045 5 1.800 200 2
DMU046 54 275.000 1.200 2
DMU047 32 8.200 1.800 6
DMU049 28 8.000 3.500 3
DMU050 5 6.600 1.550 2
DMU051 47 3.600 15.000 6
DMU052 205 90.000 40.000 3
DMU053 37 2.500 1.200 2
DMU054 15 12.000 4.500 4
DMU055 33 15.000 70.000 3
DMU056 72 21.000 4.000 2
DMU058 25 10.000 4.000 4
DMU059 11 7.000 10.000 3
DMU060 312 32.000 134.403 11
DMU061 30 6.634 600 5
DMU062 180 8.000 4.000 8
DMU063 19 1.000 80.000 6
DMU064 31 20.000 900 5
DMU065 118 10.000 7.500 7
DMU066 8 2.400 1.946 4
DMU067 7 920 700 6
DMU068 17 7.500 9.100 6
DMU069 36 10.000 3.800 3
DMU070 51 20.000 120.000 7
DMU071 7 1.500 500 6
DMU072 63 12.000 2.000 7
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DMU Inputs 2012 FTEs Floor Space SKUs Automation

DMU073 136 50.000 1.000 6
DMU074 19 12.600 22.000 6
DMU076 21 8.000 1.000 1
DMU077 18 4.000 6.000 4
DMU080 32 10.000 4.150 4
DMU081 14 7.500 7.000 2
DMU082 13 13.000 3.000 1
DMU083 10 5.000 400 4
DMU086 10 6.000 3.500 6
DMU087 200 55.000 980 5
DMU089 257 17.500 100.000 5
DMU090 11 26.000 55.000 6
DMU091 257 17.500 100.000 7
DMU093 145 30.000 2.400 6
DMU094 83 4.104 29.957 7
DMU096 29 3.050 24.000 6
DMU097 115 12.000 6.500 7
DMU098 14 2.000 900 4
DMU099 70 27.000 3.200 4
DMU100 6 1.750 1.800 2
DMU101 14 1.550 13.000 2
DMU102 90 19.000 5.000 3
DMU103 32 9.500 10.500 7
DMU104 8 5.000 1.000 2
DMU105 15 8.000 2.400 5
DMU106 13 1.350 12.000 2
DMU107 7 700 900 3
DMU108 17 1.885 1.500 4
DMU109 44 7.200 19.500 4
DMU111 14 1.500 25.000 5
DMU113 47 10.500 12.000 5
DMU114 108 32.000 5.800 5
DMU115 19 7.000 32.000 3
DMU116 11 17.000 3.700 9
DMU117 17 5.000 500 1
DMU118 7 4.000 8.000 3
DMU119 15 10.000 2.313 4
DMU122 23 18.000 450 6
DMU123 8 6.000 250 5
DMU124 27 37.000 15.000 5
DMU125 9 15.000 100 4
DMU126 210 110.000 20.000 8
DMU127 97 50.000 3.000 2
DMU128 195 34.000 6.500 7
DMU129 21 30.000 11.000 6
DMU130 16 30.000 750 3
DMU131 29 5.000 1.000 2

Table 4: DEA input table 2012.
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DMU
Outputs 2017

Order Lines
Special

Processes
Error Free %

Order
Flexibility

DMU001 1.050 7 8 22
DMU002 400 2 7 23
DMU003 500 4 6 16
DMU004 1.000 4 3 13
DMU005 7.000 2 6 19
DMU006 5.250 5 5 26
DMU007 250 3 8 29
DMU008 20.000 6 3 23
DMU010 1.300 5 6 21
DMU012 420 6 8 26
DMU014 4.000 6 6 26
DMU017 1.740 6 4 19
DMU019 1.750 4 1 24
DMU020 3.000 6 6 22
DMU022 350 7 7 23
DMU023 15.000 8 8 19
DMU024 450 9 9 24
DMU026 285 5 7 21
DMU027 200 10 5 23
DMU028 200 4 9 19
DMU030 8.500 7 5 24
DMU033 3.300 7 9 28
DMU034 8.500 8 6 24
DMU037 1.100 3 7 24
DMU040 3.000 10 7 20
DMU041 268 7 7 22
DMU042 400 5 3 18
DMU043 65 7 6 19
DMU044 1.200 6 4 20
DMU045 175 3 5 12
DMU046 8.000 7 1 23
DMU047 3.700 6 8 23
DMU049 32.421 3 6 22
DMU050 1.200 6 9 25
DMU051 2.500 7 2 23
DMU052 45.000 4 6 27
DMU053 980 4 7 22
DMU054 130 8 8 12
DMU055 6.500 7 9 24
DMU056 1.250 7 8 21
DMU058 66 6 8 30
DMU059 60 7 8 30
DMU060 33.856 7 5 23
DMU061 3.400 5 8 20
DMU062 7.000 10 8 12
DMU063 15.000 7 3 20
DMU064 300 4 7 21
DMU065 19.200 6 4 20
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DMU
Outputs 2017

Order Lines
Special

Processes
Error Free %

Order
Flexibility

DMU066 350 8 6 18
DMU067 2.850 8 7 23
DMU068 1.200 4 9 18
DMU069 300 6 5 17
DMU070 3.600 7 9 22
DMU071 400 3 8 12
DMU072 3.000 3 7 26
DMU073 4.000 9 6 24
DMU074 250 5 9 20
DMU076 1.500 4 6 19
DMU077 2.100 10 5 21
DMU080 978 4 4 18
DMU081 330 6 6 12
DMU082 2.200 7 4 16
DMU083 250 7 5 21
DMU086 500 6 6 24
DMU087 1.230 6 1 19
DMU089 30.000 7 8 20
DMU090 3.400 6 1 23
DMU091 30.000 6 9 24
DMU093 1.000 9 1 14
DMU094 7.561 7 8 22
DMU096 75 2 7 17
DMU097 3.000 7 8 18
DMU098 200 6 5 27
DMU099 1.200 10 3 12
DMU100 54 7 1 15
DMU101 800 6 9 22
DMU102 300 4 1 20
DMU103 1.000 8 8 12
DMU104 400 5 6 16
DMU105 2.500 6 9 22
DMU106 1.200 8 9 19
DMU107 96 3 5 24
DMU108 1.000 2 8 12
DMU109 220 8 7 25
DMU111 1.339 5 8 23
DMU113 120 4 8 18
DMU114 12.000 3 8 23
DMU115 2.500 3 6 28
DMU116 850 10 8 29
DMU117 650 8 8 16
DMU118 800 8 6 22
DMU119 55 4 9 22
DMU122 1.800 7 1 18
DMU123 250 6 9 30
DMU124 2.600 9 9 24
DMU125 200 4 1 20
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DMU
Outputs 2017

Order Lines
Special

Processes
Error Free %

Order
Flexibility

DMU126 35.000 10 9 26
DMU127 3.000 8 7 23
DMU128 55.000 8 1 25
DMU129 3.000 3 8 20
DMU130 3.000 10 9 27
DMU131 500 7 8 21

Table 5: DEA output table 2017.

DMU
Outputs 2012

Order Lines
Special

Processes
Error Free %

Order
Flexibility

DMU001 1.100 7 7 14
DMU002 300 2 6 23
DMU003 450 4 7 18
DMU004 800 3 4 13
DMU005 4.000 2 5 19
DMU006 1.500 3 3 23
DMU007 175 2 3 20
DMU008 15.000 6 3 16
DMU010 800 5 5 13
DMU012 350 4 3 18
DMU014 3.200 3 3 24
DMU017 2.598 5 4 19
DMU019 1.560 4 1 24
DMU020 2.200 4 6 18
DMU022 100 7 1 17
DMU023 13.500 8 8 18
DMU024 300 3 8 19
DMU026 240 5 6 21
DMU027 150 10 5 25
DMU028 272 5 8 21
DMU030 6.500 4 4 19
DMU033 1.900 5 8 24
DMU034 7.250 8 4 26
DMU037 800 3 6 16
DMU040 2.000 6 5 11
DMU041 240 7 4 22
DMU042 250 3 4 10
DMU043 25 6 4 10
DMU044 700 3 1 10
DMU045 325 2 2 10
DMU046 3.000 7 1 20
DMU047 3.200 6 7 17
DMU049 11.421 1 1 13
DMU050 550 3 7 20
DMU051 2.000 5 2 18
DMU052 35.000 2 3 17
DMU053 422 2 4 14
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DMU
Outputs 2012

Order Lines
Special

Processes
Error Free %

Order
Flexibility

DMU054 110 8 8 10
DMU055 6.000 2 6 19
DMU056 1.250 6 7 10
DMU058 85 6 6 30
DMU059 50 7 3 30
DMU060 23.860 5 4 22
DMU061 2.650 5 7 18
DMU062 9.000 9 8 10
DMU063 9.000 7 3 13
DMU064 200 4 6 21
DMU065 14.000 6 1 17
DMU066 250 8 5 18
DMU067 1.500 8 6 26
DMU068 950 4 9 18
DMU069 270 6 4 14
DMU070 5.000 3 8 21
DMU071 350 3 7 10
DMU072 1.750 2 2 20
DMU073 2.500 7 3 18
DMU074 300 5 9 10
DMU076 400 1 3 18
DMU077 1.300 2 5 21
DMU080 1.355 5 3 18
DMU081 330 6 4 10
DMU082 250 6 1 10
DMU083 150 2 1 22
DMU086 300 4 3 18
DMU087 880 6 1 21
DMU089 29.000 7 7 21
DMU090 3.200 4 1 15
DMU091 30.000 6 9 24
DMU093 1.100 4 1 13
DMU094 7.200 6 8 24
DMU096 100 2 4 17
DMU097 2.500 5 4 18
DMU098 180 4 3 27
DMU099 1.300 10 2 10
DMU100 35 7 1 10
DMU101 550 2 1 15
DMU102 140 3 1 10
DMU103 950 6 8 10
DMU104 300 4 5 17
DMU105 500 2 1 19
DMU106 1.100 7 7 13
DMU107 70 2 4 20
DMU108 1.200 2 8 10
DMU109 171 9 6 17
DMU111 1.184 5 8 23
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DMU
Outputs 2012

Order Lines
Special

Processes
Error Free %

Order
Flexibility

DMU113 160 4 3 18
DMU114 18.000 3 6 14
DMU115 500 4 3 12
DMU116 400 8 8 28
DMU117 300 3 1 15
DMU118 260 8 5 20
DMU119 50 4 8 18
DMU122 1.600 6 1 18
DMU123 50 4 1 30
DMU124 1.800 7 8 21
DMU125 200 4 1 21
DMU126 20.000 10 9 24
DMU127 2.000 8 4 18
DMU128 37.500 7 1 19
DMU129 2.500 3 7 18
DMU130 200 4 6 27
DMU131 250 6 1 17

Table 6: DEA output table 2012.

F Input and output correlation 2012

Automation Method Kendall’s τ 12 Method 1 Method 2 Method 3

Method 1 1***
Method 2 0,63*** 1***
Method 3 0,94*** 0,61*** 1***

Table 7: Cross-efficiency ranking correlation for different automation score calculations 2012.

Kendall’s τ 2012 FTEs Floor Space SKUs Automation

FTEs 1
Floor Space 0,46*** 1
SKUs 0,25*** 0,13* 1
Automation 0,2*** 0,06 0,12* 1

Table 8: Input factors’ Kendall’s τ correlation coefficients 2012.

Kendall’s τ 2012 Order Lines Special Processes Error Free % Order Flexibility

Order Lines 1
Special Processes 0,07 1
Error Free % 0,1 0,14* 1
Order Flexibility 0,03 0,04 0,09 1

Table 9: Output factors’ Kendall’s τ correlation coefficients 2012.
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Kendall’s τ 2012 Order Lines Special Processes Error Free % Order Flexibility

FTEs 0,42*** 0,05 0,04 -0,03
Floor Space 0,24*** 0,09 0,01 0,04
SKUs 0,28*** 0,1 0,14* -0,01
Automation 0,22*** 0,14* 0,13* 0,18**

Table 10: Input and output factors’ Kendall’s τ correlation coefficients 2012.

G CRS and VRS efficiency score distributions

Figure 6: DEA efficiency score distribution under CRS assumptions.

Figure 7: DEA efficiency score distribution under VRS assumptions.

H Efficient DMUs and peer selections
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DMU Number CRS 2012 Peer Selection

DMU006 1,00 2
DMU008 1,00 6
DMU024 1,00 6
DMU027 1,00 28
DMU028 1,00 34
DMU033 1,00 8
DMU034 1,00 4
DMU045 1,00 1
DMU046 1,00 6
DMU049 1,00 25
DMU050 1,00 20
DMU052 1,00 5
DMU056 1,00 1
DMU061 1,00 6
DMU063 1,00 14
DMU067 1,00 21
DMU071 1,00 4
DMU076 1,00 2
DMU082 1,00 11
DMU089 1,00 4
DMU091 1,00 1
DMU098 1,00 3
DMU100 1,00 13
DMU104 1,00 8
DMU106 1,00 18
DMU107 1,00 16
DMU108 1,00 3
DMU117 1,00 27
DMU118 1,00 5
DMU123 1,00 6
DMU125 1,00 1
DMU127 1,00 3
DMU128 1,00 17
DMU130 1,00 2
DMU131 1,00 3

Table 11: Efficient DMUs and number of selections as
peers - CRS 2012.

DMU Number VRS 2012 Peer Selection

DMU006 1,00 7
DMU008 1,00 6
DMU023 1,00 3
DMU024 1,00 7
DMU027 1,00 19
DMU028 1,00 25
DMU033 1,00 7
DMU034 1,00 4
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DMU Number VRS 2012 Peer Selection

DMU045 1,00 13
DMU046 1,00 5
DMU049 1,00 18
DMU050 1,00 15
DMU052 1,00 4
DMU054 1,00 5
DMU056 1,00 1
DMU058 1,00 1
DMU059 1,00 4
DMU061 1,00 4
DMU062 1,00 2
DMU063 1,00 10
DMU065 1,00 1
DMU067 1,00 14
DMU068 1,00 2
DMU071 1,00 4
DMU074 1,00 1
DMU076 1,00 4
DMU082 1,00 4
DMU089 1,00 4
DMU091 1,00 3
DMU094 1,00 2
DMU098 1,00 7
DMU099 1,00 1
DMU100 1,00 9
DMU101 1,00 3
DMU104 1,00 5
DMU106 1,00 10
DMU107 1,00 12
DMU108 1,00 5
DMU109 1,00 1
DMU111 1,00 4
DMU114 1,00 1
DMU116 1,00 3
DMU117 1,00 21
DMU118 1,00 2
DMU123 1,00 5
DMU125 1,00 2
DMU126 1,00 2
DMU127 1,00 3
DMU128 1,00 15
DMU130 1,00 2
DMU131 1,00 5

Table 12: Efficient DMUs and number of selections as
peers - VRS 2012.

101



I Scale inefficiencies

DMU Efficiencies 2017 CRS VRS Scale Efficiency

DMU001 0,38 0,47 0,82
DMU002 0,55 0,65 0,85
DMU003 0,31 0,37 0,84
DMU004 0,41 0,68 0,60
DMU005 0,95 1,00 0,95
DMU006 1,00 1,00 1,00
DMU007 0,24 0,61 0,40
DMU008 1,00 1,00 1,00
DMU010 0,32 0,33 0,97
DMU012 0,48 0,51 0,94
DMU014 0,29 0,31 0,93
DMU017 0,35 0,36 0,98
DMU019 0,46 0,47 0,98
DMU020 0,35 0,35 1,00
DMU022 0,46 0,48 0,96
DMU023 0,71 1,00 0,71
DMU024 1,00 1,00 1,00
DMU026 0,60 0,61 0,99
DMU027 1,00 1,00 1,00
DMU028 1,00 1,00 1,00
DMU030 0,74 0,80 0,92
DMU033 0,39 1,00 0,39
DMU034 0,94 1,00 0,94
DMU037 0,72 0,72 1,00
DMU040 1,00 1,00 1,00
DMU041 1,00 1,00 1,00
DMU042 0,50 0,67 0,75
DMU043 0,86 0,88 0,99
DMU044 0,64 0,64 0,99
DMU045 1,00 1,00 1,00
DMU046 0,92 0,93 0,98
DMU047 0,74 0,74 0,99
DMU049 1,00 1,00 1,00
DMU050 1,00 1,00 1,00
DMU051 0,62 0,65 0,95
DMU052 1,00 1,00 1,00
DMU053 0,64 0,64 1,00
DMU054 0,71 0,79 0,90
DMU055 0,48 1,00 0,48
DMU056 0,36 0,48 0,75
DMU058 0,57 1,00 0,57
DMU059 0,68 1,00 0,68
DMU060 0,50 0,57 0,88
DMU061 0,80 1,00 0,80
DMU062 0,55 1,00 0,55
DMU063 1,00 1,00 1,00
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DMU Efficiencies 2017 CRS VRS Scale Efficiency

DMU064 1,00 1,00 1,00
DMU065 0,49 0,54 0,91
DMU066 1,00 1,00 1,00
DMU067 1,00 1,00 1,00
DMU068 0,44 0,60 0,73
DMU069 0,33 0,33 0,98
DMU070 0,46 0,84 0,54
DMU071 1,00 1,00 1,00
DMU072 0,23 0,25 0,95
DMU073 0,69 0,77 0,90
DMU074 0,42 0,43 0,98
DMU076 0,28 0,30 0,90
DMU077 0,56 0,65 0,86
DMU080 0,43 0,51 0,84
DMU081 0,55 0,57 0,97
DMU082 0,63 0,64 0,98
DMU083 0,57 0,57 1,00
DMU086 0,73 0,81 0,91
DMU087 0,48 0,51 0,95
DMU089 0,91 1,00 0,91
DMU090 0,94 0,94 0,99
DMU091 0,90 1,00 0,90
DMU093 0,46 0,50 0,93
DMU094 0,58 0,78 0,75
DMU096 0,45 0,50 0,90
DMU097 0,70 0,83 0,84
DMU098 1,00 1,00 1,00
DMU099 1,00 1,00 1,00
DMU100 1,00 1,00 1,00
DMU101 0,94 1,00 0,94
DMU102 0,25 0,33 0,75
DMU103 0,61 0,74 0,83
DMU104 1,00 1,00 1,00
DMU105 0,57 1,00 0,57
DMU106 1,00 1,00 1,00
DMU107 1,00 1,00 1,00
DMU108 1,00 1,00 1,00
DMU109 0,38 0,62 0,61
DMU111 0,84 1,00 0,84
DMU113 0,37 0,40 0,93
DMU114 0,90 0,97 0,93
DMU115 1,00 1,00 1,00
DMU116 0,38 1,00 0,38
DMU117 0,70 1,00 0,70
DMU118 1,00 1,00 1,00
DMU119 0,61 0,62 0,98
DMU122 0,94 1,00 0,94
DMU123 0,75 1,00 0,75
DMU124 0,48 1,00 0,48
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DMU Efficiencies 2017 CRS VRS Scale Efficiency

DMU125 1,00 1,00 1,00
DMU126 0,50 1,00 0,50
DMU127 0,43 0,48 0,90
DMU128 1,00 1,00 1,00
DMU129 0,40 0,40 1,00
DMU130 0,48 1,00 0,48
DMU131 0,49 0,54 0,91

Table 13: Scale Efficiency of DMUs 2017.

DMU Efficiencies 2012 CRS VRS Scale Efficiency

DMU001 0,50 0,58 0,86
DMU002 0,61 0,65 0,94
DMU003 0,58 0,62 0,94
DMU004 0,50 0,61 0,83
DMU005 0,87 0,88 0,99
DMU006 1,00 1,00 1,00
DMU007 0,23 0,24 0,97
DMU008 1,00 1,00 1,00
DMU010 0,52 0,55 0,95
DMU012 0,41 0,41 0,99
DMU014 0,51 0,53 0,96
DMU017 0,35 0,36 0,98
DMU019 0,56 0,57 0,97
DMU020 0,47 0,50 0,95
DMU022 0,47 0,51 0,92
DMU023 0,87 1,00 0,87
DMU024 1,00 1,00 1,00
DMU026 0,62 0,65 0,96
DMU027 1,00 1,00 1,00
DMU028 1,00 1,00 1,00
DMU030 0,85 0,87 0,98
DMU033 1,00 1,00 1,00
DMU034 1,00 1,00 1,00
DMU037 0,65 0,65 0,99
DMU040 0,91 0,91 0,99
DMU041 0,75 0,84 0,90
DMU042 0,44 0,49 0,89
DMU043 0,91 0,95 0,95
DMU044 0,53 0,89 0,60
DMU045 1,00 1,00 1,00
DMU046 1,00 1,00 1,00
DMU047 0,77 0,83 0,93
DMU049 1,00 1,00 1,00
DMU050 1,00 1,00 1,00
DMU051 0,51 0,52 0,99
DMU052 1,00 1,00 1,00
DMU053 0,88 0,98 0,90
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DMU Efficiencies 2012 CRS VRS Scale Efficiency

DMU054 0,71 1,00 0,71
DMU055 0,83 0,91 0,92
DMU056 1,00 1,00 1,00
DMU058 0,67 1,00 0,67
DMU059 0,98 1,00 0,98
DMU060 0,48 0,54 0,88
DMU061 1,00 1,00 1,00
DMU062 0,92 1,00 0,92
DMU063 1,00 1,00 1,00
DMU064 0,64 0,65 0,98
DMU065 0,97 1,00 0,97
DMU066 0,93 0,99 0,95
DMU067 1,00 1,00 1,00
DMU068 0,55 1,00 0,55
DMU069 0,61 0,61 1,00
DMU070 0,43 0,79 0,54
DMU071 1,00 1,00 1,00
DMU072 0,40 0,40 1,00
DMU073 0,63 0,65 0,97
DMU074 0,42 1,00 0,42
DMU076 1,00 1,00 1,00
DMU077 0,65 0,67 0,98
DMU080 0,48 0,49 0,98
DMU081 0,78 0,80 0,97
DMU082 1,00 1,00 1,00
DMU083 0,85 0,87 0,98
DMU086 0,49 0,55 0,90
DMU087 0,57 0,63 0,90
DMU089 1,00 1,00 1,00
DMU090 0,69 0,78 0,89
DMU091 1,00 1,00 1,00
DMU093 0,26 0,26 0,99
DMU094 0,95 1,00 0,95
DMU096 0,38 0,40 0,94
DMU097 0,34 0,35 0,99
DMU098 1,00 1,00 1,00
DMU099 0,76 1,00 0,76
DMU100 1,00 1,00 1,00
DMU101 0,90 1,00 0,90
DMU102 0,26 0,33 0,79
DMU103 0,35 0,60 0,59
DMU104 1,00 1,00 1,00
DMU105 0,47 0,48 0,99
DMU106 1,00 1,00 1,00
DMU107 1,00 1,00 1,00
DMU108 1,00 1,00 1,00
DMU109 0,61 1,00 0,61
DMU111 0,92 1,00 0,92
DMU113 0,32 0,33 0,95
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DMU Efficiencies 2012 CRS VRS Scale Efficiency

DMU114 0,93 1,00 0,93
DMU115 0,43 0,55 0,78
DMU116 0,70 1,00 0,70
DMU117 1,00 1,00 1,00
DMU118 1,00 1,00 1,00
DMU119 0,71 0,81 0,87
DMU122 0,69 0,71 0,97
DMU123 1,00 1,00 1,00
DMU124 0,52 0,99 0,53
DMU125 1,00 1,00 1,00
DMU126 0,66 1,00 0,66
DMU127 1,00 1,00 1,00
DMU128 1,00 1,00 1,00
DMU129 0,45 0,62 0,73
DMU130 1,00 1,00 1,00
DMU131 1,00 1,00 1,00

Table 14: Scale Efficiency of DMUs 2012.

J Cross-efficiency comparison

Cross-efficiency 2012 Sexton Classic Sexton Ratio Multiplicative Game Theory

Minimum Score 0,113 0,113 0,000 0,197
Average Score 0,379 0,383 0,028 0,614
Maximum Score 0,887 0,881 0,927 1,000
Std. Dev. Score 0,166 0,172 0,107 0,227

Table 15: Results comparison of cross-efficiency methods 2012.
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Figure 8: Cross-efficiency score distribution 2012 per method.

WSR Results
2017

Sexton Classic Sexton Ratio Multiplicative Game Theory

Sexton Classic 0
Sexton Ratio 1 0
Multiplicative 1 1 0
Game Theory 1 1 1 0

Table 16: Wilcoxon rank test results for cross-efficiency method comparison 2017.

Cross-efficiency
Ranking 2017

Sexton Classic Sexton Ratio Multiplicative
Game

Theory

Top 1 DMU098 DMU098 DMU067 DMU049
Top 2 DMU050 DMU050 DMU050 DMU098
Top 3 DMU028 DMU028 DMU028 DMU050
Top 4 DMU049 DMU049 DMU027 DMU028
Top 5 DMU104 DMU104 DMU098 DMU104
Top 6 DMU066 DMU066 DMU066 DMU066
Top 7 DMU027 DMU027 DMU104 DMU027
Top 8 DMU067 DMU067 DMU006 DMU067
Top 9 DMU041 DMU041 DMU115 DMU107
Top 10 DMU107 DMU040 DMU040 DMU041
Top 11 DMU040 DMU107 DMU049 DMU128
Top 12 DMU043 DMU043 DMU071 DMU040
Top 13 DMU071 DMU071 DMU106 DMU099
Top 14 DMU045 DMU128 DMU108 DMU100
Top 15 DMU128 DMU024 DMU047 DMU071
Top 16 DMU106 DMU045 DMU041 DMU106
Top 17 DMU024 DMU106 DMU107 DMU045
Top 18 DMU100 DMU047 DMU114 DMU043
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Cross-efficiency
Ranking 2017

Sexton Classic Sexton Ratio Multiplicative
Game

Theory

Top 19 DMU099 DMU100 DMU045 DMU108
Top 20 DMU047 DMU099 DMU053 DMU024
Top 21 DMU086 DMU108 DMU105 DMU006
Top 22 DMU108 DMU064 DMU086 DMU064
Top 23 DMU064 DMU006 DMU034 DMU114
Top 24 DMU117 DMU117 DMU061 DMU115
Top 25 DMU063 DMU086 DMU044 DMU063
Top 26 DMU006 DMU114 DMU024 DMU046
Top 27 DMU114 DMU123 DMU118 DMU122
Top 28 DMU123 DMU063 DMU099 DMU047
Top 29 DMU115 DMU053 DMU117 DMU086
Top 30 DMU053 DMU115 DMU111 DMU034
Top 31 DMU105 DMU105 DMU064 DMU118
Top 32 DMU058 DMU023 DMU097 DMU125
Top 33 DMU023 DMU122 DMU023 DMU117
Top 34 DMU054 DMU034 DMU062 DMU005
Top 35 DMU119 DMU058 DMU101 DMU008
Top 36 DMU044 DMU054 DMU123 DMU052
Top 37 DMU034 DMU119 DMU068 DMU123
Top 38 DMU122 DMU044 DMU030 DMU054
Top 39 DMU012 DMU061 DMU094 DMU023
Top 40 DMU026 DMU026 DMU026 DMU053
Top 41 DMU061 DMU062 DMU063 DMU061
Top 42 DMU118 DMU118 DMU005 DMU044
Top 43 DMU062 DMU012 DMU082 DMU105
Top 44 DMU083 DMU008 DMU008 DMU091
Top 45 DMU046 DMU083 DMU012 DMU090
Top 46 DMU082 DMU046 DMU043 DMU089
Top 47 DMU103 DMU005 DMU073 DMU119
Top 48 DMU008 DMU073 DMU122 DMU097
Top 49 DMU052 DMU082 DMU002 DMU030
Top 50 DMU131 DMU131 DMU103 DMU062
Top 51 DMU097 DMU103 DMU080 DMU058
Top 52 DMU059 DMU030 DMU077 DMU082
Top 53 DMU030 DMU059 DMU056 DMU073
Top 54 DMU073 DMU097 DMU083 DMU111
Top 55 DMU005 DMU081 DMU125 DMU103
Top 56 DMU081 DMU125 DMU037 DMU026
Top 57 DMU125 DMU065 DMU055 DMU101
Top 58 DMU065 DMU052 DMU130 DMU059
Top 59 DMU068 DMU111 DMU033 DMU037
Top 60 DMU111 DMU068 DMU020 DMU083
Top 61 DMU077 DMU116 DMU001 DMU012
Top 62 DMU042 DMU077 DMU065 DMU081
Top 63 DMU101 DMU101 DMU051 DMU051
Top 64 DMU116 DMU037 DMU116 DMU002
Top 65 DMU090 DMU056 DMU081 DMU077
Top 66 DMU056 DMU042 DMU091 DMU065
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Cross-efficiency
Ranking 2017

Sexton Classic Sexton Ratio Multiplicative
Game

Theory

Top 67 DMU080 DMU002 DMU131 DMU094
Top 68 DMU002 DMU001 DMU124 DMU131
Top 69 DMU001 DMU080 DMU070 DMU042
Top 70 DMU094 DMU094 DMU119 DMU130
Top 71 DMU037 DMU090 DMU127 DMU126
Top 72 DMU091 DMU127 DMU058 DMU068
Top 73 DMU051 DMU051 DMU089 DMU124
Top 74 DMU089 DMU091 DMU042 DMU080
Top 75 DMU130 DMU130 DMU054 DMU055
Top 76 DMU127 DMU089 DMU129 DMU127
Top 77 DMU124 DMU069 DMU052 DMU001
Top 78 DMU055 DMU055 DMU046 DMU116
Top 79 DMU069 DMU124 DMU100 DMU056
Top 80 DMU126 DMU126 DMU004 DMU070
Top 81 DMU070 DMU070 DMU059 DMU093
Top 82 DMU020 DMU020 DMU076 DMU019
Top 83 DMU113 DMU113 DMU128 DMU033
Top 84 DMU033 DMU033 DMU003 DMU113
Top 85 DMU109 DMU074 DMU010 DMU060
Top 86 DMU074 DMU109 DMU090 DMU022
Top 87 DMU129 DMU076 DMU069 DMU129
Top 88 DMU076 DMU093 DMU074 DMU069
Top 89 DMU022 DMU022 DMU126 DMU020
Top 90 DMU004 DMU129 DMU113 DMU087
Top 91 DMU093 DMU004 DMU014 DMU074
Top 92 DMU019 DMU003 DMU019 DMU109
Top 93 DMU060 DMU019 DMU109 DMU004
Top 94 DMU003 DMU060 DMU072 DMU096
Top 95 DMU017 DMU010 DMU017 DMU017
Top 96 DMU010 DMU096 DMU096 DMU076
Top 97 DMU096 DMU087 DMU022 DMU010
Top 98 DMU014 DMU017 DMU060 DMU003
Top 99 DMU087 DMU014 DMU087 DMU014
Top 100 DMU007 DMU007 DMU007 DMU007
Top 101 DMU072 DMU072 DMU093 DMU072
Top 102 DMU102 DMU102 DMU102 DMU102

Table 17: Cross-efficiency ranking for all four methods
2017 (DMUs in bold, when in Top10 for all four meth-
ods).

Cross-efficiency
Ranking 2012

Sexton Classic Sexton Ratio Multiplicative
Game

Theory

Top 1 DMU028 DMU028 DMU067 DMU028
Top 2 DMU067 DMU067 DMU050 DMU128
Top 3 DMU050 DMU027 DMU106 DMU027
Top 4 DMU027 DMU050 DMU006 DMU049
Top 5 DMU104 DMU104 DMU027 DMU067
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Cross-efficiency
Ranking 2012

Sexton Classic Sexton Ratio Multiplicative
Game

Theory

Top 6 DMU049 DMU049 DMU028 DMU050
Top 7 DMU106 DMU117 DMU033 DMU100
Top 8 DMU128 DMU128 DMU045 DMU117
Top 9 DMU117 DMU107 DMU104 DMU104
Top 10 DMU107 DMU066 DMU061 DMU107
Top 11 DMU066 DMU106 DMU117 DMU076
Top 12 DMU100 DMU100 DMU076 DMU131
Top 13 DMU118 DMU098 DMU040 DMU106
Top 14 DMU098 DMU045 DMU008 DMU098
Top 15 DMU045 DMU131 DMU127 DMU066
Top 16 DMU131 DMU061 DMU108 DMU006
Top 17 DMU033 DMU118 DMU024 DMU118
Top 18 DMU076 DMU076 DMU056 DMU082
Top 19 DMU061 DMU006 DMU047 DMU123
Top 20 DMU023 DMU023 DMU066 DMU033
Top 21 DMU040 DMU033 DMU053 DMU130
Top 22 DMU006 DMU040 DMU023 DMU108
Top 23 DMU114 DMU041 DMU118 DMU045
Top 24 DMU082 DMU108 DMU030 DMU061
Top 25 DMU059 DMU114 DMU082 DMU059
Top 26 DMU108 DMU008 DMU071 DMU024
Top 27 DMU053 DMU053 DMU041 DMU008
Top 28 DMU030 DMU123 DMU107 DMU034
Top 29 DMU041 DMU130 DMU111 DMU114
Top 30 DMU130 DMU024 DMU034 DMU089
Top 31 DMU034 DMU034 DMU130 DMU071
Top 32 DMU008 DMU043 DMU005 DMU023
Top 33 DMU043 DMU059 DMU046 DMU063
Top 34 DMU047 DMU047 DMU098 DMU053
Top 35 DMU058 DMU082 DMU063 DMU062
Top 36 DMU123 DMU030 DMU131 DMU065
Top 37 DMU024 DMU058 DMU081 DMU040
Top 38 DMU065 DMU065 DMU114 DMU091
Top 39 DMU071 DMU071 DMU049 DMU046
Top 40 DMU063 DMU062 DMU077 DMU052
Top 41 DMU119 DMU119 DMU062 DMU043
Top 42 DMU052 DMU063 DMU020 DMU030
Top 43 DMU089 DMU026 DMU094 DMU127
Top 44 DMU062 DMU083 DMU125 DMU125
Top 45 DMU081 DMU111 DMU089 DMU056
Top 46 DMU111 DMU054 DMU055 DMU083
Top 47 DMU054 DMU125 DMU080 DMU047
Top 48 DMU091 DMU081 DMU124 DMU041
Top 49 DMU026 DMU077 DMU068 DMU005
Top 50 DMU077 DMU005 DMU100 DMU111
Top 51 DMU125 DMU089 DMU122 DMU094
Top 52 DMU083 DMU052 DMU101 DMU081
Top 53 DMU056 DMU091 DMU091 DMU101
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Cross-efficiency
Ranking 2012

Sexton Classic Sexton Ratio Multiplicative
Game

Theory

Top 54 DMU094 DMU127 DMU037 DMU054
Top 55 DMU127 DMU056 DMU026 DMU058
Top 56 DMU005 DMU116 DMU044 DMU119
Top 57 DMU116 DMU094 DMU126 DMU055
Top 58 DMU069 DMU069 DMU069 DMU077
Top 59 DMU080 DMU080 DMU052 DMU099
Top 60 DMU020 DMU064 DMU128 DMU122
Top 61 DMU064 DMU002 DMU073 DMU026
Top 62 DMU002 DMU122 DMU116 DMU069
Top 63 DMU101 DMU101 DMU043 DMU116
Top 64 DMU068 DMU020 DMU058 DMU126
Top 65 DMU122 DMU068 DMU064 DMU064
Top 66 DMU126 DMU044 DMU129 DMU002
Top 67 DMU109 DMU003 DMU003 DMU037
Top 68 DMU044 DMU037 DMU001 DMU109
Top 69 DMU055 DMU126 DMU004 DMU080
Top 70 DMU003 DMU099 DMU054 DMU044
Top 71 DMU099 DMU086 DMU099 DMU020
Top 72 DMU037 DMU109 DMU083 DMU068
Top 73 DMU086 DMU046 DMU002 DMU073
Top 74 DMU124 DMU042 DMU065 DMU003
Top 75 DMU042 DMU001 DMU010 DMU124
Top 76 DMU046 DMU055 DMU042 DMU001
Top 77 DMU001 DMU124 DMU059 DMU086
Top 78 DMU012 DMU004 DMU123 DMU019
Top 79 DMU004 DMU012 DMU119 DMU105
Top 80 DMU051 DMU010 DMU051 DMU051
Top 81 DMU129 DMU105 DMU086 DMU090
Top 82 DMU105 DMU051 DMU097 DMU060
Top 83 DMU103 DMU073 DMU103 DMU042
Top 84 DMU010 DMU129 DMU115 DMU010
Top 85 DMU073 DMU103 DMU109 DMU004
Top 86 DMU097 DMU097 DMU012 DMU087
Top 87 DMU019 DMU072 DMU014 DMU129
Top 88 DMU060 DMU019 DMU072 DMU012
Top 89 DMU115 DMU060 DMU070 DMU014
Top 90 DMU072 DMU115 DMU105 DMU115
Top 91 DMU074 DMU074 DMU017 DMU072
Top 92 DMU113 DMU087 DMU074 DMU103
Top 93 DMU014 DMU113 DMU087 DMU074
Top 94 DMU070 DMU014 DMU019 DMU097
Top 95 DMU087 DMU096 DMU090 DMU022
Top 96 DMU090 DMU070 DMU060 DMU070
Top 97 DMU096 DMU090 DMU113 DMU096
Top 98 DMU017 DMU093 DMU093 DMU113
Top 99 DMU093 DMU017 DMU096 DMU017
Top 100 DMU102 DMU102 DMU102 DMU102
Top 101 DMU022 DMU007 DMU007 DMU093
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Cross-efficiency
Ranking 2012

Sexton Classic Sexton Ratio Multiplicative
Game

Theory

Top 102 DMU007 DMU022 DMU022 DMU007
Table 18: Cross-efficiency ranking for all four methods
2012 (DMUs in bold, when in Top10 for all four meth-
ods).

Kendall’s τ 2012 Sexton Classic Sexton Ratio Multiplicative Game Theory

Sexton Classic 1***
Sexton Ratio 0,94*** 1***
Multiplicative 0,66*** 0,66*** 1***
Game Theory 0,83*** 0,82*** 0,65*** 1***

Table 19: Kendall’s τ correlations for 2012 cross-efficiency rankings.

Kendall’s τ 2012 DEA Super-efficiency

Sexton Classic 0,645*** 0,652***
Sexton Ratio 0,636*** 0,644***
Multiplicative 0,591*** 0,579***
Game Theory 0,776*** 0,791***
Sexton EfficientOnly 0,64*** 0,653***
DEA 1*** 0,925***
Superefficiency 0,925*** 1***

Table 20: Kendall’s τ correlation between cross-efficiency, DEA and super-efficiency scores
2012.

K Cluster analysis

Industry
Differences
2017

Sum
Squared

Differences

Degrees of
Freedom

Mean
Squared

Differences

Chi-
squared

Probability
≥ Chi-
squared

Groups 1.803 2 902 6,32 0,0424

Error 14.451 55 263
Total 16.255 57

Table 21: Kruskal-Wallis test for different industries 2017.

Industry
Differences
2012

Sum
Squared

Differences

Degrees of
Freedom

Mean
Squared

Differences

Chi-
squared

Probability
≥ Chi-
squared

Groups 1.954 2 977 6,85 0,0325

Error 14.301 55 260
Total 16.255 57

Table 22: Kruskal-Wallis test for different industries 2012.
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Cluster Ranks 2012
Overall
Sample

Construction+
Engineering

Consumer
Goods

Food/
Groceries

Observations 102 20 19 19
Minimum Rank 1 3 1 6
Maximum Rank 102 102 99 101
Average Rank 51,50 66,10 44,58 45,84

Std. Dev. Rank 29,44 27,90 28,67 26,61
WSR vs. Remainder
p-value

0,01 0,26 0,36

Table 23: Cluster metrics and Wilcoxon rank test results vs. remaining panelists 2012.

2012 Value Chain’s
Cross-Efficiency

Overall
Sample

Production Wholesale Retail

Observations 102 27 61 14
Minimum Score 0,11 0,12 0,11 0,29

Maximum Score 0,88 0,80 0,88 0,69
Average Score 0,38 0,36 0,37 0,46

Std. Dev. Score 0,17 0,17 0,18 0,12

Table 24: Kruskal-Wallis test for different value chain positions’ effect on cross-efficiency scores
2012.

2012 Ownership’s
Cross-Efficiency

Overall
Sample

In-House
3PL-

Dedicated

3PL-
Multiple

Observations 102 58 10 34
Minimum Score 0,11 0,11 0,15 0,12

Maximum Score 0,88 0,88 0,68 0,68
Average Score 0,38 0,40 0,36 0,36

Std. Dev. Score 0,17 0,20 0,16 0,12
KW p-value 0,7780

Table 25: Kruskal-Wallis test for different ownership types’ effect on cross-efficiency scores
2012.
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L Cross-efficiency and input regression coefficients

MLR Coefficients
2012

All DMUs Construction+
Engineering

Consumer
Goods

Food/
Groceries

Cold-Storage 0,09 -0,25 0,03 0,12
FTEs -0,49*** -0,81 -0,58 -0,37*
Floor Space -0,32*** 0,22 0,03 -0,4*
SKUs -0,34*** -0,35 -0,55** -0,09
Automation -0,44*** -0,04 -0,7*** -0,65***
Order Lines 0,7*** 0,58 0,97** 0,85***
Special Processes 0,24*** 0,71*** 0,01 0,26*
Error Free % 0,06 0,38 0,09 0,12
Order Flexibility 0,23*** 0,35 0,59** 0,32**

Adjusted R2 0,55 0,58 0,78 0,84
RMSE 0,59 0,65 0,47 0,41
F-value 14,40 3,88 7,98 11,10

Table 26: Multiple linear regression coefficients of inputs, outputs and cold-storage on cross-
efficiency score 2012.

MLR Coefficients
Change

All DMUs Construction+
Engineering

Consumer
Goods

Food/
Groceries

Cold-Storage -0,05 -0,75* 0,26 0,34
FTEs -0,2** 0,07 0,05 -0,43
Floor Space 0,05 0,24 -0,49 0,18
SKUs -0,54*** -0,31 -0,15 -1,27
Automation -0,68*** -0,42* -1,32*** -0,69**
Order Lines 0,59*** 0,11 0,33 1,29
Special Processes 0,28*** -0,19 0,33 0,46
Error Free % 0,18** 0,81** 0,61 -0,39
Order Flexibility 0,24*** 0,64** 0,12 0,22

Adjusted R2 0,52 0,75 0,62 0,36
RMSE 0,69 0,50 0,62 0,80
F-value 13,10 7,22 4,30 2,13

Table 27: Multiple linear regression coefficients of change on inputs, outputs and cold-storage
on change in cross-efficiency score between 2017 and 2012.
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M Cluster-specific cross-efficiency results

Cross-efficiency Scores
2012

Construction+
Engineering

Consumer
Goods

Food/ Groceries

Minimum 0,21 0,19 0,25

Maximum 0,95 0,99 0,98
Average 0,50 0,55 0,69

Std. Dev. 0,21 0,22 0,20

Observations 20 19 19

Adjusted R2 0,69 0,76 0,89

RMSE 0,56 0,49 0,34

F-value 5,60 7,18 16,50

Table 28: Descriptive statistics cross-efficiency score distribution for calculations with individual
clusters 2012.

Construction+
Engineering Cluster

2012 2017 Change

Cold-Storage -0,12 0 -0,79

FTEs -0,59 -1,33 -0,33
Floor Space 0,35 -0,45 0,34

SKUs -0,22 -0,22 -0,16

Automation -0,33 -0,64*** -0,12

Order Lines 0,45 1,82* 0,06
Special Processes 0,55** 0,34 -0,16

Error Free % 0,35 0,48** 1,13**
Order Flexibility 0,48** 0,01 0,31

Adjusted R2 0,69 0,59 0,58

RMSE 0,56 0,64 0,65

F-value 5,60 4,03 3,94

Table 29: Multiple linear regression coefficients of inputs, outputs and cold-storage on cross-
efficiency score - construction+engineering cluster.
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Consumer Goods Cluster 2012 2017 Change

Cold-Storage 0,19 0,13 0,13
FTEs -0,9 -0,48 -0,13
Floor Space -0,15 -0,44 -0,51*
SKUs -0,27 -0,03 0,24
Automation -0,62** -0,7* -1,25***
Order Lines 1,48*** 1,37* 0,24
Special Processes 0,26 0,31 0,85**
Error Free % 0,21 0,26 0,37
Order Flexibility 0,2 0,17 0,06

Adjusted R2 0,76 0,47 0,75
RMSE 0,49 0,73 0,50
F-value 7,18 2,76 6,99

Table 30: Multiple linear regression coefficients of inputs, outputs and cold-storage on cross-
efficiency score - consumer goods cluster.

Food/Groceries Cluster 2012 2017 Change

Cold-Storage 0,02 0,31*** 0,16
FTEs -0,25 -0,09 0,56
Floor Space -0,47** -0,25* 0,2
SKUs -0,4** -0,24** -2,21
Automation -0,79*** -0,76*** -0,69**
Order Lines 0,51*** 0,45*** 1,35
Special Processes 0,34** 0,15* 0,14
Error Free % 0,29* 0,26** -0,17
Order Flexibility 0,3** 0,35*** 0,13

Adjusted R2 0,89 0,92 0,38
RMSE 0,34 0,28 0,79
F-value 16,50 25,40 2,24

Table 31: Multiple linear regression coefficients of inputs, outputs and cold-storage on cross-
efficiency score - food/groceries cluster.

N Sensitivity analysis

Scale Changes 0,1x 0,2x 0,5x 1x 2x 5x 10x

Sexton Classic 0,25 0,22 0,16 0,00 0,12 0,19 0,21
Sexton Ratio 0,29 0,23 0,12 0,00 0,13 0,20 0,22
Multiplicative 1,26 0,94 0,45 0,00 0,23 0,45 0,63
Game Theory 0,21 0,19 0,14 0,00 0,10 0,14 0,21

Table 32: Average relative score deviations per method, based on re-scaling 10% of inputs by
a given factor.

116



Entry Errors Original 5% 10% 25% 50% 75% 100%

Sexton Classic 0,00 0,05 0,07 0,09 0,13 0,13 0,15
Sexton Ratio 0,00 0,08 0,09 0,11 0,14 0,15 0,14
Multiplicative 0,00 0,12 0,15 0,21 0,26 0,30 0,36
Game Theory 0,00 0,08 0,08 0,11 0,13 0,14 0,17

Table 33: Average relative score deviations per method, re-scaling a different percentage of
inputs by 75% - 125%.

Efficient DMU Elimination Original 1 2 3 4 5 6

Sexton Classic 0,00 0,10 0,14 0,15 0,20 0,22 0,24
Sexton Ratio 0,00 0,09 0,12 0,14 0,18 0,20 0,24
Multiplicative 0,00 0,33 0,49 0,50 0,77 0,89 0,92
Game Theory 0,00 0,07 0,10 0,16 0,22 0,22 0,25

Table 34: Average relative score deviations per method, based on elimination of a given number
of efficient DMUs.
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