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EXECUTIVE SUMMARY 

This thesis studies the intensive care unit of the Erasmus MC, an academic hospital 

in Rotterdam. It receives cardiology patients of two different kinds, unplanned 

emergency patients as well as patients that underwent elective surgery. The ICU 

environment is characterised by high uncertainty with regard to the two key 

parameters that determine its capacity usage, patient arrivals and patient length 

of stay. Providing life-critical care is a resource-intensive process and the uncertain 

environment makes efficient capacity planning difficult. Since patients arrive in a 

critical state, immediate care is required for any arrival. Should the ICU be at its 

capacity limit a patient needs to be prematurely discharged to make room, a 

consequence that might negatively affect the discharged patient. As part of a 

relocation to a new facility, the ICU unit was subjected to a restructuring that 

combined two separate units into a single one that now needs to care for a 

combined and re-defined patient mix. Faced with the challenge of adapting to its 

new setting, the lack of capacity management policies became evident and the 

question which measures can help the ICU to increase its level of patient care by 

minimizing patient dismissal was posed.  

A review of existing academic literature on ICU capacity management set the basis 

for the capacity management policy development. Previous studies confirm that 

capacity optimization in a hospital is a relevant endeavour, especially in light of 

the pressure of patient growth and the need for better care (Green, 2006). Common 

methods to study ICU’s are queuing models and simulation. However, the 

assumptions of a queuing model do not necessarily hold in a critical care 

environment (Green, 2002) and discrete event simulation is able to better represent 
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the operational dynamics (Günal & Pidd, 2010). For this project, the combination 

of solution finding and accurate modelling that can be achieved by combining 

optimization with discrete event simulation was determined to be the best method. 

The majority of existing research improves ICU capacity management by utilizing 

levers not available in this study, such as allocating beds flexibly across hospital 

wards (Kim et al., 2000), regional collaboration (Litvak et al., 2008) and influencing 

available capacity (Harper & Shahani, 2002, Holm et al., 2013). All studies define 

their improvements by reducing the number of occurrences of a negative 

consequence, most commonly the refusal of patient admissions, while premature 

discharge was only at the centre of one prominent study by Dobson et al., 2010. 

Accurately including the uncertainty that the ICU faces requires close 

approximation of the patient length of stay and arrival rates. Using categorical 

averages for these variables does not reflect reality and the approximation needs 

to be preceded by a patient classification that reduces within-group variability 

(Ridge et al., 1998). The long tail length of stay distributions can be estimated by 

fitting right-tailed probability distributions to the data (Harper, 2002) and arrival 

rates are best approximated by a time-varying Poisson arrival rate (Green, 2006). 

Before the heuristic development process is started, a thorough statistical analysis 

of the patient population is executed, based on a data set that contains 12,170 

admissions to the ICU over the span of four years. The diagnosis categories of the 

Erasmus MC are used as patient type classification to reduce within-group 

variability without compromising the interpretability of the study results. The 

classification is achieved by text mining the diagnosis information of each patient 

for keywords that are used to assign patient types.  
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The main insights from the statistical analysis are: 

• The split between planned and unplanned patients is 37% vs 63% 

• All patient types show significant length of stay outliers  

• Most patients (73%) leave the ICU in less than 24 hours 

• 53% of ICU capacity is used by only 14% of long-stay patients 

• The largest patient classes (STEMI, Overige, CABG, Ritmestoornissen) 

stay only a few hours but have a very variable length of stay 

• Certain patient types are characterised by a very long length of stay 

(ECMO, LOTX, HTX, OHCA, LVAD, Hartfalen) 

• The OHCA and Hartfalen patient types use a disproportionate amount of 

capacity (19% and 13%) compared to their share of the patient population 

(5% for both) 

• Patient arrivals have slightly increased over the past few years (+4.5%) 

• There is a seasonal difference between summer and winter arrivals, probably 

caused by reduced staffing during the summer months 

• There is within-week seasonality, caused by shifts in the elective patient 

schedule and unplanned arrivals 

• There is daily seasonality with a strong peak at midday 

 

Based on the analysis, arrival rates were modelled as time-varying Poisson 

distributions per patient type, considering the discovered seasonality and length of 

stay distributions were fitted for each patient type. It also revealed the 

improvement possibility of smoothing the rescheduling of elective surgeries across 

the week to improve capacity usage at the ICU. 
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The heuristic development process begins by defining a regular weekly elective 

surgery schedule by aggregating planned patients into five larger groups according 

to their length of stay characteristics. This is done since most of the planned patient 

categories are too small and too variable to be considered on a weekly basis. Next, 

a new variable that estimates average expected capacity use per patient type is 

defined by combining the arrival frequency with patient survivor functions which 

are generated by applying survival analysis to the length of stay statistics. This so-

called “Loadfactor” successfully imitates the capacity usage “lag” across various 

days caused by the probability of extended length of stay. 

An integer optimization programme allocates the newly defined planned patient 

Loadfactor across the week using a squared-sum objective function that evenly 

balances the planned patient load with the unplanned patient load. This is achieved 

by discouraging peaks and moving long stay patients towards the end of the week 

so that free capacity on the weekend is better utilized. By evening out the expected 

average patient load, the probability of the ICU reaching its capacity limit is 

reduced, which in turn reduces the rate of premature discharges. 

The arrival smoothing heuristic is tested by replicating the uncertain ICU 

environment in a discrete event simulation. After successfully validating the 

accuracy of the simulation, the heuristic is tested versus the base case and 

successfully reduces the rate of premature discharge by 20.47%. 

This newly developed heuristic succeeds in improving capacity management at the 

ICU and provides the opportunity for future research to iterate and improve on it.  
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1. INTRODUCTION 

 Background and Motivation 

 
 Erasmus Medical Center 

 
The Erasmus MC is the largest hospital in the Netherlands (CIBG, 2018) and aims to 

both provide excellent patient care, as well as to be a leading institution in healthcare 

research and education. The origins of Erasmus MC as a hospital date back to the 19th 

century, when Rotterdam’s first hospital, the Coolsingel Hospital, was constructed. In 

1965 a medical faculty was established to create an academic hospital.  The Erasmus MC 

in its current form exists since 2002 when a collaboration agreement with Erasmus 

University Rotterdam was finalized. At its location in the centre of Rotterdam Erasmus 

MC provides the entire range of medical services and also houses its two specialized 

branches, Erasmus MC-Sophia, a children’s hospital, and the Erasmus MC Cancer 

Institute (Erasmus MC, 2018). 

 

 Department of Cardiology & ICU unit 

 
In order to provide specialized care for patients with chest disorders, Erasmus MC created 

the Thoraxcenter. It consists of the department of pulmonology, the department of 

thoracic surgery as well as the department of cardiology. Patients can receive care for any 

disease that affects their lungs, heart, throat or large blood vessels. Examples include heart 

attacks, heart failures, pulmonary hypertension as well as heart and lung transplants 

(Erasmus MC, 2018). The unit of analysis of this thesis is the intensive care unit within 

the department of cardiology, as shown in Figure 1-1. 
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An intensive care unit (referred to as ICU from now on) is set up to care for critically ill 

patients by employing specialized doctors and nurses, as well as having the necessary 

equipment to enable constant monitoring of a patient’s health status (Kelly, 2018).  The 

ICU in question consists of two units, namely the ICCU and ICTH. The ICCU receives 

emergency cardiology patients that arrive via ambulance or transfer from other hospitals 

and currently consists of 12 beds. The ICTH, on the other hand, receives elective surgery 

patients from the department of thoracic surgery and consists of 7 beds. A bed is only 

available if a dedicated nurse is staffed. The ICU works with a shift system of three eight-

hour shifts, which are from 8:00 am - 4:00 pm, 4:00 pm - 12:00 am and 12:00 am - 8:00 

am. 

 

 Patient types 

 
The ICU differentiates between patient types according to diagnosis. The appendix depicts 

an overview and description of these categories, which are separated into two kinds, 

“unplanned” (emergency patients, Table A-1) and “planned” (elective surgery patients, 

Table A-2) patients. 

  

Figure 1-1: Organigram Erasmus MC 
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 Patient flows 

 
The ICU receives patients from various sources and is only a temporary care facility for 

the most critical stages of a patients healing process. It is thus important to understand 

the patient flows that run through the ICU, an overview of which is depicted in Figure 

1-2. 

 

Figure 1-2: Patient flow model 
 

Patients within the hospital arrive from the operation theatre and cath lab1 for recovery. 

Newly admitted patients arrive via the emergency room or are transferred from other 

hospitals. After a sufficient degree of recovery, patients are discharged to lower level care 

facilities in the hospital (High care or medium care), a non-cardiology ICU or, rarely, 

discharged to their homes.  

 

  

                                     
1 A cath lab is a specialized hospital facility where cardiac catheterization is performed, a procedure that 
visualizes blood flow through the heart to diagnose potential heart issues (Heart.org, 2017) 
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 Bed planning at the ICU 

 
All elective surgeries are scheduled by the surgery department according to the operation 

room and surgeon availability, considering availability for emergency arrivals as well. 

There is limited coordination of the surgery schedule with the ICU. The ICU receives a 

weekly overview of elective surgery arrivals and prepares its beds accordingly. To ensure 

a sufficient level of attention, a bed can only be used if a dedicated nurse is available, the 

actual availability of beds thus fluctuates according to staffing levels. The head nurse of 

the department prepares a daily overview of patients currently being cared for and all 

expected arrivals on a whiteboard in the ICU. During their daily rounds, which happen at 

least twice a day, the doctors check the patients and, given a sufficient degree of recovery, 

decide do discharge patients to lower level care. In the case of overcrowding, a bed is made 

available by bumping a patient to a lower level care facility earlier than planned. It is the 

Thoraxcenter’s policy to not cancel scheduled surgeries in such a situation. 

 

 The move of the ICU 

 
The growth of patient numbers, as well as the wish to futureproof the Erasmus MC 

hospital, led to the decision to construct a new hospital building at the current site. 

Construction work on the west wing, which will house the ICU, was completed and in 

May 2018 the ICU moved to the new premises. The state-of-the-art facilities improve 

many aspects of the daily operations of the ICU but pose a challenge for the ICU 

management since it is combined with a reorganization of the ICU setup. The two separate 

units, the ICCU and the ICTH were integrated into one and certain patient categories are 

no longer being served by the ICU, resulting in a new patient mix that changes the patient 

load and arrival patterns at the ICU unit and requires a reassessment of ICU capacity 

management. 
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 Problem description 

 
The ICU expects patient levels to increase in the coming years and faces the challenge to 

provide its service with a limited number of beds. The ICU aims to accommodate and 

provide service to both planned and unplanned emergency patients. The uncertainty of 

emergency patient arrivals as well as the uncertainty of the actual length of stay (referred 

to as “LOS” from now on) of patients in the ICU, which furthermore differs greatly across 

patient types, results in a very difficult bed planning process. As described in the 

paragraph on capacity management, the bed planning efforts currently employed at the 

ICU are very limited and created manually on a day-by-day basis. There are no 

estimations of emergency patient arrivals and the actual patient LOS. Due to its policy to 

not cancel elective surgeries, situations of overcrowding lead to premature discharge that 

negatively affect patient care. Simultaneously, a high level of utilization of the ICU is 

important due to its high cost. The ICU wishes to improve its bed planning by introducing 

these estimations and creating a bed capacity management scheme that reduces the 

number of premature discharges by understanding the differences in arrivals and LOS of 

each patient type and applying this knowledge to better balance patient type composition. 

 
 Research Objective 

 

Erasmus MC’s ICU will be reduced in size and currently does not have a data-driven bed 

management scheme in place. The research objective is to assist the ICU in developing a 

bed capacity management scheme that is based on estimations of patient arrival rates and 

length of stay per patient type to improve bed planning at the ICU and ultimately its 

ability to provide better care to its patients.  
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 Research questions 

 
The main research question is:  

“What bed capacity management scheme can help the Erasmus MC’s intensive care unit 

to increase its level of patient care by minimizing premature patient dismissal?” 

 

The following sub-questions support the main research question: 

I. Are there arrival pattern differences across time and per patient type the ICU 

receives?  

II. How can patient arrivals per type be modelled? 

III. What are the LOS characteristics exhibited per patient type? 

IV. How can LOS per patient type be modelled? 

V. How does the combination of patient arrival rates and differing LOS influence 

capacity usage at the ICU? 

VI. How should the intensive care unit improve the management of its limited bed 

capacity? 

 

 Assignment and Deliverables 

 

The objective of the ICU at Erasmus MC is to professionalize its bed planning process by 

leveraging the availability of historical data to generate a bed capacity management 

scheme per patient type that minimizes the occurrences of premature dismissal. 

The aim of this thesis project is to support this effort by delivering the underlying analyses 

and heuristic to the ICU in two stages. In the first stage, historical patient data of arrivals 

and diagnosis are analyzed using seasonal analysis and data mining to estimate arrival 

rates and length of stay per patient type.  
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In the second stage of the thesis project, a heuristic that aims to improve ICU performance 

will be developed on the basis of the statistical analysis. After optimizing it, a simulation 

that accurately models the ICU environment by including the factors estimated in the 

first stage will be used to validate the heuristic. Finally, a sound and actionable 

recommendation for the ICU is formulated. 

 

 Managerial contribution 

 
This research contributes to practice by helping the ICU at the Erasmus MC to cope with 

the challenges described in this chapter. More specifically, it aims to alleviate the capacity 

management problem the ICU faces by contributing findings on two different levels. On 

the one hand, the statistical analysis and visualisation of the historical data will uncover 

facilitate the understanding of patient dynamics at the ICU as well as uncover trends and 

abnormalities. Secondly, the integration of the heuristic developed in this thesis into the 

capacity management process at the ICU will enable the ICU to better accommodate 

patients. This, in turn, will lead to more patients receiving better care at the ICU, 

increasing patient well-being. 

 

 Academic contribution 

 
The ICU as part of the larger hospital service system represents an entity with a lot of 

potential for improvement through the application of operations research. Green (2005) 

notes that hospitals are under a lot of pressure to provide better care with limited 

resources, leading to a need to address operational inefficiencies and a drive to optimize 

operations. In their analysis of operations & supply chain management research in 

healthcare Dobrzykowski et. al. (2014) find that capacity planning is one of the central 

areas where the application of operations research has led to improvements. Harper (2002) 
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explains that the academic challenge in modelling any hospital resource is the accurate 

consideration of the complexity, uncertainty, variability and resource limitations that set 

the dynamics of a hospital unit apart.  

Academically this research will extend existing literature by developing a new capacity 

management scheme that aims to improve capacity management decision making under 

uncertainty. The heuristic development process will be novel due to its focus on aspects 

of ICU capacity planning that have received less attention so far, such as bumping as the 

only capacity alleviation option and the combination of the optimization and discrete 

event simulation methods during the development. A closer examination and inclusion of 

seasonality in arrival rates will improve the current practice of simply assuming a general 

Poisson distribution for patient arrivals and considering the differentiated length of stay 

by type instead of a simple average or overall distribution will ensure validity by 

addressing common criticisms of earlier models.  

 

 Conceptual Project Design 

 
 Research strategy 

 
The project at hand is an example of a problem-solving design study, more specifically the 

research objective can be interpreted as an actionable recommendation to improve a 

business process. Since the aim is to deliver the ICU at Erasmus MC with an applicable 

solution, a detailed analysis of their situation is required. The design study will follow the 

steps of the problem intervention cycle: 
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1) Problem definition 

During meetings with the director of the ICU as well as visits to the hospital the 

implications of the upcoming reduction in the size of the ICU due to the move were 

discussed and initial ideas on how to optimize the bed planning process developed. 

 

2) Problem diagnosis 

As guidance for the solution finding process, a detailed analysis of historical bed occupancy 

data of the ICU is necessary. To develop a fitting solution, the aim of the ICU needs to 

be defined and conceptualized. Furthermore, the actual distribution of length of stay and 

patient arrivals per type needs to be compared with the categorical assumptions currently 

in place. 

 

3) Design of solution 

Further discussions with the ICU staff will be held to define the design criteria of the tool 

and how it can fit into their bed planning process. User requirements in form of constraints 

of a bed capacity management scheme are of special importance. Quantitative analysis of 

historical data will be the basis to deliver the estimations of the previously unobserved 

uncertain arrival rates and length of stay per patient type. Based on inputs from the ICU 

management, as well as the study of previous academic literature, a heuristic that may 

improve capacity management is derived and optimized. A simulation model will include 

these inputs and will be used to test the effectiveness of the proposed heuristic. 

 

4) Solution implementation 

An implementation plan for the recommendations will be developed which defines how 

they can be integrated into the current bed planning process at the ICU.  
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5) Evaluation 

The initial simulation-based evaluation of the effect of the developed recommendations 

will be recorded and in a future iteration of the project actual implementation can be 

evaluated. 

 

 Research process model 

 
Figure 1-3 : Research process model 
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2. LITERATURE REVIEW 

 Exploration of Practice 

 
One of the main challenges faced by intensive care units is capacity constraints in face of 

increasing patient numbers. The OECD reports that in the next 30 years the share of the 

population over 65 in the Netherlands will increase from currently 18% to 28%. The ageing 

population is expected to increase the demand for critical care (OECD, 2017). Shortages 

of critical care capacity already are an issue in the Netherlands. Reports of ICU capacity 

shortages in the news led the Dutch health ministry to commission a thorough analysis of 

ICU capacities in the Netherlands. The Julius Centrum voor Huisartsgeneeskunde en 

Patiëntgebonden Onderzoek surveyed 113 ICU units (87% of all units in the Netherlands) 

over 4 months in 2001. The study found that around 10% of patients arriving during that 

time span were rejected and the non-availability of a bed caused 65% of these rejections. 

Furthermore, it found that the causes for non-availability of beds were more complex than 

bed capacity limits and included the efficiency of bed use (Hautvast et al., 2001). 

 

Apart from the patient service considerations, efficient utilization of ICU beds is also 

important due to the high costs involved. Even though they are small in size, intensive 

care units account for a sizeable share of hospital costs, in certain cases up to 20% of a 

hospitals budget (Chalfin, 1995). An evaluation of 51 intensive care units in Germany 

found that these costs stem from the highly specialized equipment in use, as well as from 

expensive treatments that are common in critical care. The majority of the cost, however, 

is caused by staffing, which accounts for 56,1% of ICU cost, due to requiring full-time 

physicians as well as staffing nurses relative to the number of occupied beds (Moerer et 

al., 2007). 
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The issues of service degradation due to overcrowding and cost-efficient utilization of ICU 

resources are both highly relevant for practitioners and directly connected to the 

management of bed availability, resulting in a very worthwhile field of research. 

 
 Exploration of Theory 

 
Modelling of intensive care unit capacity has seen increasing attention over the last few 

years. The before mentioned trade-off between underutilization of costly resources and the 

necessity to have critical care capacity available, as well as the uncertain environment, 

make it an interesting but challenging application of operational research methods.  

 

 Capacity planning in healthcare - methods 

 
In general, two methods see wide application in the realm of intensive care unit capacity 

analysis, namely simulation and queuing analysis. Both methods allow modelling the 

stochastic environment of hospitals and find application when describing patient flow 

through the hospital as well as when studying single units, such as the ICU.  

Queuing analysis is regularly applied when analyzing a hospital as a service system (Litvak 

et al., 2008, Kim et al., 1999). It is seen as a good fit to model healthcare environments 

due to its ease of use and low data requirements, it allows to quickly understand resource 

utilization and service performance (Green, 2006). The typical M/M/s model finds 

application but is usually extended to better fit the healthcare environment, for example 

by adding pre-emptive/non-pre-emptive priority for time-sensitive arrivals or by 

accounting for finite capacity (M/M/s/K model) (Green, 2006). Another variation is to 

model refused admissions at the ICU using the Erlang loss system (M/M/c/c model) since 

this phenomenon is comparable to blocking in a circuit switched telephone system (Litvak 

et al., 2008, Bruin et al., 2007). A queuing model can be problematic when studying an 
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ICU since the assumption that new patient arrivals are able to wait in a queue does not 

necessarily hold in a critical care environment (Green, 2002). Additionally, Green (2002) 

notes that the Markovian assumption of exponential service times does not hold due to 

the highly variable length of stay in the intensive care unit. A multi-server variation of 

the M/G/1 model was developed by Allen (2014) which manages to account for the 

increased variability of service time. 

The second technique that finds application when modelling a healthcare environment is 

creating a simulation (Griffith et al., 2005, Costa et al., 2003, Ridge et al., 1998). Discrete 

event simulation is especially suited for examining “What if?” scenarios when studying 

resource use or patient flow in a hospital (Jacobson et al., 2006). Discrete event simulation 

allows modelling patient arrivals and discharges as discrete events that change the state 

of the unit in question to arrive at an understanding which factors influence ICU 

performance measures (Günal & Pidd, 2010). The simulation method also allows the 

incorporation of variability into the model, Harrison et al. (2005) rely on a Monte Carlo 

style setup that includes multiple random sampling of variables such as the patient arrival 

rate. Another type of simulation recognized by Günal & Pidd (2010) as relevant is 

compartmental modelling, which allows modelling LOS distributions by splitting them 

into discrete time brackets as well as how patients move between care units. Simulation 

is often applied to validate queuing models and examine the effect of certain assumptions 

(Kao & Tung, 1981, Ridge et al., 1998, Kim et al., 1999). 

While these methods are well suited to test assumptions such as admission policies, they 

are no optimization tools by itself. Combining the ability of discrete event simulation to 

recreate the dynamics of uncertain environments with the optimization power of 

mathematical programs was done by Butler et al. (1992). Very uncommon in the literature, 

it promises to be a potentially effective measure and will be applied in this study. 
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 ICU capacity planning - heuristics 

 

The majority of research (Harper & Shahani, 2002, Ridge et al., 1998) aims at determining 

the optimal size of ICUs to avoid capacity constraints, assuming the possibility to increase 

the number of beds in the ICU. Similarly, other authors take a multi-unit view of the issue 

and examine how beds should be distributed across different hospital wards (Lapierre et 

al., 1999, Holm et al., 2013, Kao & Tung, 1981). Others, such as Kim et al. (2000) propose 

a somewhat flexible bed capacity that is shared with other hospital units. The dynamics 

between hospital wards were examined by Bruin et al. (2007), who find that economies of 

scale apply to hospital wards and that capacity constraints disrupt upstream care units.  

Litvak et al. (2008) aim to alleviate capacity constraints through better coordination with 

regional hospitals, reserving beds for regional overflow allows for better overall care. 

 

Most ICU capacity studies aim to optimize patient care by reducing the occurrence of one 

of three negative consequences of overcrowding. The first and most popular being patient 

refusal (or transfer) in which a newly arrived patient is not admitted to the ICU in case 

of no bed availability and either referred to another hospital, to another ICU unit within 

the hospital or admitted to a lower care facility. The measure which is optimized is either 

the share of refusals or the probability of being refused (Litvak et al., 2008, Harper & 

Shahani, 2002). Another examined measure is the cancellation of an elective surgery, in 

which a pending surgery is cancelled to free a bed for an unplanned patient (Kim et al., 

2000). Lastly, the premature discharge of a current ICU patient (referred to as “bumping”) 

to free up a bed exists as well. This method has seen less research attention, a complete 

model based on bumping was developed only in 2010 by Dobson et al.  

Kao & Tung (1981) note in their research that a persistent difficulty in this field of study 
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is that the occurrences of these negative consequences often are ad-hoc decisions that do 

not get recorded. 

 

In their review of simulation modelling in healthcare, Günal & Pidd (2010) note that there 

is a lack of generalizability in the application of models since they are generally 

characterized by facility- and unit specific application. Nevertheless, the broad research 

done in this area lays the groundwork for future models to improve on earlier work and 

contribute a unique solution to literature. 

 

 Variable approximation –  length of stay 

 

The LOS can be interpreted as the throughput time of any hospital ward (Yoon et al., 

2003). Weissman (1997) completed a thorough statistical study of LOS data on patient 

admissions over six years at a surgical ICU, split into separate diagnostic groups. The 

main finding was that the frequency distributions are strongly skewed to the right and are 

comprised of a “body”, interpreted as “typical behaviour” as well as a long tail of 

“outliers”. Due to the high skewness, the mode and median are most adequate to describe 

typical LOS. Weissman also states that beyond removing outliers caused by erroneous 

data entry, accurate observations of atypical LOS (possibly caused by rare complications) 

might influence the analysis and their removal should be explored.  

Efforts to predict LOS have been made, using demographic characteristics, comorbidity2 

and physiological variables recorded at admission as explanatory variables of LOS (Chang 

et al., 2002, Knaus et al., 1993, Hachesu et al., 2013, Tu & Guerriere, 1993). Chang et al. 

(2002) and Knaus et al. (1993) use multivariate regression to predict LOS and achieve an 

                                     
2 Comorbidity: the simultaneous presence of more than one medical condition 
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R2 of 0.32 and 0.15 respectively. Hachesu et al. (2013) use support vector machines and 

Tu & Guerriere (1993) a neural network to predict which patients will experience 

prolonged LOS by categorizing them into previously defined categories. All authors 

comment that a wide range of random influences and unforeseeable medical complications 

negatively affect the explanatory power of their models.  

The methodology of considering the LOS of patients differs among studies of ICU capacity. 

Early studies use average LOS values in their models (Kao & Tung, 1981), however, 

research by Ridge et al. (1998) confirmed that using averages is mathematically not correct 

due to the high variation of the LOS. They suggest the application of classification trees 

to group patients with the aim to reduce within group LOS variation. This was put into 

practice by Ridley et al. (1998) as well as Costa et al. (2003). This method is problematic, 

however, since it is a retrospective classification and thus cannot readily be used to classify 

incoming patients in the day-to-day ICU environment. Another possibility of grouping 

patients to reduce the variability of the LOS was introduced by Griffiths et al. (2005), 

who differentiated by the source of the patient and found it effective in case patients from 

different sources have consistently different profiles.  

To accurately account for LOS distributions per patient type when modelling an ICU, 

Harper & Shahani (2002) and Harper (2002) fit statistical distributions to the LOS of 

patient groups and find that the Weibull, lognormal, gamma or negative exponential 

distributions are suited to represent LOS frequencies. Insufficient LOS data or highly 

irregular LOS frequencies that cannot be described by a statistical distribution are usually 

incorporated by sampling from the actual historical distribution (Griffiths et al., 2005). 
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 Variable approximation –  arrival rate 

 

Early time series analysis of patient arrivals at a US hospital done by Swartzman in 1970 

found that scheduled arrivals, which are deterministic, can be described by a normal 

distribution around their scheduled time and unscheduled arrivals are Poisson with 

significant hourly differences. More recent studies model emergency arrivals as Poisson 

(Kim et al., 2000) as well and research by Green (2006) confirms that approximation using 

a Poisson arrival distribution is valid since patient arrivals behave similarly compared to 

other random arrivals observed in retail, call centres or emergency services. However, it is 

emphasized by Green (2006) that one of the defining characteristics of the Poisson process, 

that arrival probability is independent of time, does not hold in the hospital environment. 

Admissions show seasonal and daily variations and thus require shorter time intervals or 

a range of admission rates to be approximated as Poisson (Green, 2006). Costa et al. 

(2003) rely on actual arrival patterns per time of day, day and month of elective and 

emergency patients in their mathematical model to avoid this pitfall. Griffiths et al. (2005) 

incorporate arrival rates dependent on source and time, while Kao & Tung (1981) rely on 

forecasts based on monthly admission data to determine hospital arrivals. Harrison et. al. 

(2005) improve on earlier studies by incorporating a Poisson parameter that varies per 

weekday. Valid representation of patient arrival rates will thus require an analysis of 

seasonality to determine the correct interval at which the rate should be varied. 
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3. METHODOLOGY 

 Approach 

 

In order to answer the posed research question, a heuristic needs to be developed that 

enables the ICU to better manage its capacity. As established in the literature review, the 

ICU’s operations are defined by two uncertain variables, namely the patient arrival rate 

and the patient LOS. Accurately representing these two inputs of the model will ensure 

the validity of the heuristic. Key to a successful representation of these variables is a sound 

categorization of patients to reduce within-group variability. Thus, the categorization of 

patients into different types is the first step of this analysis and forms the basis for the 

definition and estimation of both the patient arrival rate and LOS. Next, the two input 

variables need to be approximated. The estimation of patient arrival rates needs to reflect 

the seasonality that has been observed in studies of hospital admissions. The long-tailed 

nature of LOS distributions needs to be represented due to the high variation and the 

detrimental impact of LOS outliers on bed availability. In parallel to the estimation of the 

variables, the historical data of the ICU is analysed to gain an understanding of the current 

situation, which will deliver important inputs for the development of the improvement 

heuristic. With the approximations and in place, the heuristic will be developed and 

optimized considering any restrictions that are in place in the form of constraints. Lastly, 

a simulation model is designed, and the effect of the heuristic on ICU performance is 

tested. 
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 Data Collection and Tools 

 

The analysis and models of this study are based on an export of all patient admissions at 

the ICU from the 1st of January 2012 until the 31st of December 2015 from the ICU’s 

patient management system. Table 3-1 summarizes the fields and descriptions of the 

export.  

Field Title Description Field Type 
ID A unique ID of each patient admission String 
patID An ID unique to each patient String 
birthdate The birthdate of the patient Numeric (Date) 
gender The gender of the patient String (Categorical) 
admitWT The weight of the patient Numeric 
height The height of the patient Numeric 
careUnitLabel The identifier of the care unit the patient is 

in (ICCU/ICTH/MC/HC) 
String (Categorical) 

beginUnitTime The moment of arrival at the unit identified 
in “careUnitLabel” 

Numeric (Date) 

endUnitTime The moment of discharge from the unit 
identified in “careUnitLabel” 

Numeric (Date) 

PatientAdmitTime The moment of the admission to the 
hospital (can be equal to “beginUnitTime” 
if the ICCU/ICTH is the first unit of 
admission 

Numeric (Date) 

PatientDischargeTime The moment of the patient’s discharge from 
the hospital (can be equal to “endUnitTime” 
if the ICCU/ICTH is the unit that 
discharges the patient 

Numeric (Date) 

diagnosistime The moment the patient was diagnosed 
(only applies to ICCU patients) 

Numeric (Date) 

diagnosis The diagnosis of the patient’s condition 
(only applies to ICCU patients) 

String 

operationtime The moment of the patient’s operation (only 
applies to ICTH patients) 

Numeric (Date) 

operation The kind of operation executed (only applies 
to ICTH patients) 

String 

Table 3 -1: Description of dataset fields 
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The dataset contains all admissions to both the ICTH and ICCU unit as well as incomplete 

data on Medium Care and High Care admissions, in total 16,442 admissions were recorded 

in these four years. The data was checked for completeness and consistency. It was noted 

that there were a large number of duplicates, caused by the fact that changing the content 

of the “diagnosis” or “operation” fields duplicated the entire entry. These changes were 

examined and only consisted of minor adaptions, with each original entry containing the 

most relevant information. Since a unique patient can be re-admitted and thus be present 

multiple times in the dataset, a new variable that identifies unique visits was created by 

concatenating “patID” and “PatientAdmitTime”. After removing Medium Care and High 

Care admissions as well as filtering the dataset for unique visits, the number of relevant 

admissions to the ICCU and ICTH turned out to be 12,170. Apart from these adjustments, 

only minimal cleaning was necessary, since the export was of good quality.  

To create the basis of the simulation model, a thorough analysis of the raw data was 

required. The initial statistical analysis, data preparation and patient classification were 

accomplished using the spreadsheet software Microsoft Excel 2016 (v. 16.15) as well as the 

R based analytical package Alteryx Designer (v. 2018.2). The seasonal analysis was done 

using R (v. 3.5.0), distribution fitting was done using the MATLAB package (v. R2018a). 

 

 Patient Classification 

 

A consensus in existing literature on ICU capacity management is that modelling the ICU 

environment requires a classification of patients into different categories. In the academic 

literature after-the-fact classification in the form of classification trees is a common 

approach to reduce LOS variability (Ridge, 1998, Costa, 2003), while others (Weissman, 

1997, Griffiths et al., 2005) use a readily observable characteristic (the diagnosis/source of 

the patient) as the basis for patient classification. In the spirit of arriving at an actionable 
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recommendation, a patient classification of the easily observed second kind is preferred for 

this research. During discussions with the director of the Erasmus MC’s ICU unit, it was 

established that in their daily operations they categorize patient type by diagnosis. By 

deciding to adopt the same categorization in this research the interpretation and 

implementation of the results for the ICU staff are facilitated (refer back to Table A-1 & 

Table A- A-2 for an overview of all patient types). This approach is in line with the aim 

of the categorization to reduce within-group variability since both academic literature 

(Ridge et al., 1998) and discussions with the ICU staff confirmed that each disease type 

has a certain LOS profile and differing arrival rate. The patient classification was not in 

place in the dataset and was derived from the string fields “diagnosis” (for ICCU patients) 

and “operation” (for ICTH patients) that contain a description of the condition of and 

the procedures executed on each patient. The data science software package “Alteryx 

Designer” was used to execute the text mining required to allocate all patients to types. 

A detailed description of the process is given in Appendix B, and visualisation of its 

implementation in Figure B-1.  

A brief overview of the workflow is as follows: The first step was mining all fields for 

common phrases and keywords, this was done by building a workflow that used the “fuzzy 

match” technique, which accepts less than perfect matches, to compare all strings among 

each other and deriving the most common phrases and keywords. These were sorted by 

frequency of occurrence and discussed with the ICU director. Together irrelevant keywords 

were eliminated and all relevant keywords were connected to their corresponding patient 

type. After compiling all keywords into a helper sheet, a workflow was built to find and 

match patient type according to the information contained in the “diagnosis” / 

”operation” field. Finally, the occasions where more than one patient type was matched 

were examined and eliminated by refining the keyword list and re-running the workflow 
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until a coherent classification was in place. The resulting classification was then checked 

against the yearly estimates of yearly patients per type by the Erasmus MC. 

 

 Estimation of Variables & Statistical analysis 

 

 Length of stay 

The LOS of a patient represents the time a patient occupies a bed in the hospital system. 

Since the study is focused on the ICU unit only it is defined as: 

!"# = %&'(&)*+),% − .%/)&(&)*+),% 

 

It was calculated for all ICCU/ICTH patients and the frequency distributions per patient 

type were compiled. For an initial understanding of the distributions, summary statistics 

were calculated that include the median, mode, coefficient of variance as well as the range 

in percentiles. As stated by Weissman (1997), the distribution of recovery time of patients 

tends to be distorted by extreme outliers. The statistical summary of LOS data was 

discussed with the ICU director and it was determined that indeed each LOS distribution 

contained extremely long LOS outliers, which, even though they might have been accurate 

recordings, were not representative of the patient type. It was thus decided to remove the 

top 5% observations of each patient type. With the historical LOS frequencies in place, 

the distribution fitting function was coded. All LOS distributions were fitted with the 

Lognormal, Weibull and Gamma distributions, which were found to be a good fit for LOS 

data by Harper (2002), as well as the Log-logistic distribution, which is an additional 

distribution that is well suited for fitting right-tailed distributions. Following the intuition 

of the maximum likelihood estimation, the distribution that maximized the log-likelihood 

score was chosen for each patient type. 
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 Arrival rate 

To examine overall patient arrival behaviour all arrivals were examined together at first. 

Counts of patient arrivals per year, month, weekday and hour were compiled using the 

“beginUnitTime” date and time field. Arrivals were then calculated by averaging the 

arrivals per year, month, weekday and hour across the years of available data. After 

studying the seasonality revealed by this initial analysis, patient arrivals were split into 

planned and unplanned, as well as per patient type and the calculation was repeated.  

As established during the literature review, modelling unplanned arrivals as Poisson has 

been proven to be effective, however, it is required to observe shorter time intervals, since 

patient arrivals are not independent of time due to seasonality (Green, 2006). The planning 

horizon of the ICU is one week ahead, furthermore, since there is evidence of daily 

variations, the hourly level of arrivals should be considered. To make the results more 

practical the timing of the three nursing shifts at the ICU (8:00 am - 4:00 pm, 4:00 pm - 

12:00 am and 12:00 am - 8:00 am) are used as a subdivision of each day when studying 

the historical arrivals, which will allow the ICU to staff according to the results more 

easily. The simulation will use a more detailed hourly arrival rate, thus, for each unplanned 

patient type, 24 Poisson arrival parameters for each weekday are defined.  

Planned patients arrive according to elective surgery demand and are subject to a schedule 

laid out by the surgery planner, two factors which, in the current setup, are not influenced 

by the ICU. While the final planned patient schedule is known about a week in advance, 

there is an element of uncertainty with regard to the exact point in time at which an 

elective surgery patient arrives. The first surgery starts at 8 am in the morning and is 

followed by the next in line once it is completed. Each kind of surgery has a different and 

variable duration, a fact that introduces variability into the exact time of a planned patient 

arrival on a certain day. Since the creation of the surgery schedule is outside of the scope 

of this project and existing schedules do not go far into the future, planned arrivals need 
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to be approximated. This is done by determining the average number of planned patients 

per surgery kind per day and simulating the sequence of their arrival by sampling the 

surgery duration from its known range, with the first surgery starting at 8 am and the 

following arrivals queuing until a surgery slot is available.  

 

 Heuristic Development & Optimization 

 
The estimation of patient arrival rates and LOS goes hand in hand with a thorough 

statistical analysis of the available historical data of the ICU performance. This 

understanding of capacity use at the Erasmus MC as well as of its current practices is 

combined with approaches from past ICU studies to develop a heuristic that has the 

potential to improve ICU performance. The resulting heuristics will then be optimized. 

The basis of the optimization model is created by defining an objective function as well as 

parameters, decision variables and constraints. The heuristic development is detailed in 

chapter 5. 

 
 Simulation Model & Validation 

 

Before defining the model for the simulation, restrictions that were discussed together with 

the ICU staff are defined and additional assumptions that are necessary for the model are 

detailed. Next, a detailed simulation of the Erasmus MC’s ICU will be built that includes 

the previously described classification and estimations of the uncertain variables to 

realistically account for the ICU environment. As stated in the literature review, discrete 

event simulation presents itself as a good fit to model the dynamics of an intensive care 

unit and has been successfully applied in previous studies (Günal & Pidd, 2010). After 

testing the validity of the resulting simulation model, the effect of the bed capacity 

management heuristic can be tested. It will be run multiple times to improve validity and 
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to arrive at a concise recommendation. The development of the simulation model and the 

validation is further discussed in chapter 6. 

 

 Recommendations & Conclusion 

 
The findings and interpretation are summarized to arrive at a concise recommendation for 

the ICU. Before concluding the research, an outlook of future steps, as well as a suggestion 

for further research, are given. 
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4. STATISTICAL ANALYSIS 

 Patient Population 

 
The average age of an ICU patient was 63.71 years, the gender split was 65% male, 35% 

female. While all patients were successfully classified into patient types, four groups of 

patients were excluded from further analysis: For 696 admissions the “diagnosis” / 

”operation” field was NULL, so these entries were eliminated. A patient type defined only 

as “recovery” was a catch-all for unspecified post-surgery patients and matched to 280 

admissions. The patient types Electrophysiology, “Longchirurgie” and “Kinder-

hartchirurgie” were matched to 130, 623 and 632 patients respectively. Discussing the 

result with the ICU director revealed that the ICU will not care for these four patient 

groups anymore after the move, so they were excluded as well, resulting in a total of 10,772 

remaining matches.  

 

Table 4-1 contains an overview of the frequency of each patient type and Table 4-2 

quantifies the split between planned and unplanned patients. Studying the results of the 

patient classification reveals that the three largest patient types, namely STEMI, Overige 

and CABG make up about half of all patients (45.75%) and consequently require special 

attention. On the other hand, the eight smallest patient types account for only 3.87% of 

all patients admitted over four years and do not have a significant influence on the ICU 

performance. Out of the top three, CABG is the only one consisting of planned patients 

and is notably less frequent compared to STEMI and Overige. Consequently, the split of 

arrival kind in Table 4-2 confirms that the large majority of patients cared for in the ICU 

are unplanned, a factor that introduces significant variability at the ICU. 
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Patient Type Count Percentage Arrival Kind 

STEMI 1931 17.93% Unplanned 
Overige 1875 17.41% Unplanned 
CABG 1122 10.42% Planned 
Ritmestoornissen 904 8.39% Unplanned 
Aorta 794 7.37% Planned 
Klep 624 5.79% Planned 
NSTEMI 590 5.48% Unplanned 
OHCA 557 5.17% Unplanned 
Hartfalen 548 5.09% Unplanned 
TAVI 538 4.99% Planned 
Cardiology 316 2.93% Planned 
Pericarditis 218 2.02% Unplanned 
Overige TH 214 1.99% Planned 
Congenital 124 1.15% Planned 
Endocarditis 86 0.80% Unplanned 
Thoracotomie 69 0.64% Planned 
Re-Thoracotomie 63 0.58% Planned 
HTX 53 0.49% Planned 
LOTX 52 0.48% Planned 
Tamponade 46 0.43% Unplanned 
LVAD 30 0.28% Planned 
ECMO 18 0.17% Unplanned 

Table 4 -1: Frequency table of patient types 

 
Arrival Kind Share 
Planned 37.12% 
Unplanned 62.88% 

        Table 4 -2: Share of patient arrival types 
 

 Length of Stay 

 
The service time of the intensive care unit is represented by a patient’s length of stay. 

Previous research has already established that LOS is a highly variable measure, 

characterized by a long tail distribution due to it being influenced by unique factors, such 

as comorbidity, type of disease and the presence of complications. Realistic modelling of 
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the ICU environment requires a solid understanding and incorporation of patient LOS, for 

which the patient classification described in the methodology section forms the basis. 

 

 LOS per type 

Each patient type is characterized by a unique distribution of LOS. Table 4-3 gives a 

statistical overview of LOS per patient type in hours. Since there is a consensus among 

researchers that the simple average is not representative (Ridge et al., 1998), the listed 

median gives a more accurate impression of the typical LOS of each patient type. To give 

a perspective on the relative size of the variation, the coefficient of variation is included, 

defined as  012 = 34

5678
, with values less than 0,75 representing low variability and values 

above 1,3 representing high variability. Furthermore, the listed percentiles, as well as the 

listed maximum give an impression of the high outliers that can occur in any patient 

category. Studying the LOS characteristics of each patient types reveals a number of 

interesting insights, especially in connection with the number of yearly patients of certain 

types. Patients of both types typically tend to leave the ICU within the day, overall 

73.26% of patients are discharged within 24 hours. It is notable that the three largest 

unplanned patient types (STEMI, Overige and Ritmestoornissen) are highly variable but 

are characterised by a rather short LOS. Potential blockage can come from OHCA and 

Hartfalen patients, whose LOS is not highly variable but is around two and three days 

respectively with significant outliers. These two groups make up 10.17% of all patient 

arrivals.  The most common planned patient types (CABG, TAVI, Aorta & Klep) exhibit 

lower variability and are typically discharged in less than 24 hours. Patients of the 

transplant surgeries (HTX & LOTX) as well as LVAD patients come in small numbers 

but are certain to stay more than two days with some of these patients staying longer 

than a week. The Cardiology and Re-Thoracotomie patients show high outliers compared 

to their median values and consequently have a higher variability.  
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Table 4 -3 : LOS descriptives per patient type (Planned patient types are denoted by the asterisk) 
 

Visual examination of the histograms of LOS per patient type (Figure D-1 in the appendix) 

clearly shows the long right-tailed nature of the respective distributions. Additionally, a 

clear discharge pattern can be recognised by the peaks in the distribution, most patients 

get discharged within the day of admission or 24h or 48h later. 

  

 ABC analysis 

How the difference in LOS among patients impacts the capacity of the ICU can be studied 

by applying the ABC analysis method. Usually applied to classify inventory by popularity, 

it turns out to be well suited to examine resource usage among patients. Patients were 

sorted by LOS and split into three classes. Class C contains all patients that stay less than 

one full day (!"# < 20ℎ), class B patients that stay between one and two days (20ℎ <

Patient Type Mean Median SD CoV 75thP 95thP Max 
ECMO 194 184 144 0.74 252 397 436 
LOTX* 113 100 65 0.57 129 172 240 
OHCA 96 86 68 0.71 135 196 235 
HTX* 107 83 76 0.71 125 235 287 
LVAD* 95 67 88 0.93 118 173 258 
Hartfalen 68 44 69 1.03 94 163 222 
Endocarditis 52 44 47 0.90 83 110 160 
TAVI* 25 22 22 0.87 24 46 73 
Re-Thoracotomie* 38 22 43 1.12 49 96 117 
Aorta* 26 21 22 0.83 24 51 79 
Pericarditis 29 21 28 0.96 41 69 96 
CABG* 19 20 10 0.51 22 25 43 
KLEP* 19 20 12 0.65 22 25 44 
Tamponade 33 19 49 1.48 28 82 115 
Cardiology* 31 19 39 1.27 39 83 115 
Thoracotomie * 20 18 23 1.14 23 59 68 
Congenital* 13 14 9 0.63 22 23 25 
NSTEMI 18 10 17 0.96 25 44 53 
Overige 14 7 15 1.09 21 38 48 
STEMI 11 6 14 1.28 10 26 46 
Overige TH* 12 5 14 1.21 20 25 37 
Ritmestoornissen 10 4 14 1.37 12 24 43 
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!"# < 48ℎ) and class A all patients that stay longer than two days (48ℎ < !"#). Total 

capacity use was calculated by summing all individual LOS and then the cumulative share 

of capacity usage per patient was calculated and plotted on a Pareto curve (see Figure 

4-1).  

 
Figure 4 -1: LOS Pareto curve 
 

Even after removing outliers as described in the methodology section, the Pareto curve 

shows that 53% of capacity (measured in bed-days) is occupied by class A, which makes 

up only 14% of all patients. Class B patients make up 27% of all patient admissions and 

occupied 30% of used capacity. Finally, class C, the largest class, accounts for 60% of all 

patients and 20% of all used capacity. In order to get a clearer and a more aggregated 

picture of ICU capacity use, it is helpful to return to the patient type classification, which 

reveals a number of relevant insights. When studying the share of arrivals and capacity 

usage per type in more detail (Table 4-4, a visualisation is provided by Figure 4-2) one 

can easily recognise which patient groups tend to occupy most of the ICU capacity. As 

hypothesized after examining the LOS descriptives, OHCA and Hartfalen patients, two 

rather small classes, occupy a large share of ICU capacity, in fact, they have the highest 

share of ICU capacity usage and thus deserve special attention. OHCA patients account 
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for only 5.17% of all patients but occupy 19.22% of ICU capacity, their share of capacity 

use is 3.71 times higher than their share of arrivals. The second largest share of capacity 

(13.43%) is occupied by the Hartfalen type, which also accounts for a rather small share 

of total patients (5.09%, resulting in a capacity use versus arrival ratio of 2.64). These two 

groups are likely to occupy ICU beds for a longer period of time and block capacity, 

especially if there is more than one admitted patient of these types. The four largest 

patient groups (STEMI, Overige, CABG, Ritmestoornissen) all account for a large share 

of patient arrivals but occupy comparatively less of the ICU’s capacity (Ratios of 0.45, 

0.58, 0.76 and 0.41). The ten largest patient classes account for 82.85% of the ICU capacity 

usage, beyond these share of capacity use of each patient type drops quickly, mostly due 

to the small number of patients in these groups. 

Patient Type % of Capacity use  % of Patients Ratio 
STEMI 7.99% 17.93% 0.45 
Overige 10.04% 17.41% 0.58 
CABG* 7.90% 10.42% 0.76 
Ritmestoornissen 3.43% 8.39% 0.41 
Aorta* 7.54% 7.37% 1.02 
Klep* 4.34% 5.79% 0.75 
NSTEMI 3.88% 5.48% 0.71 
OHCA 19.22% 5.17% 3.72 
Hartfalen 13.43% 5.09% 2.64 
TAVI* 5.08% 4.99% 1.02 
Cardiology* 3.36% 2.93% 1.15 
Pericarditis 2.22% 2.02% 1.10 
Overige TH* 0.96% 1.99% 0.48 
Congenital* 0.62% 1.15% 0.54 
Endocarditis 1.75% 0.80% 2.19 
Thoracotomie* 0.52% 0.64% 0.81 
Re-Thoracotomie* 0.87% 0.58% 1.49 
HTX* 1.96% 0.49% 3.98 
LOTX* 2.12% 0.48% 4.38 
Tamponade 0.52% 0.43% 1.22 
LVAD* 0.95% 0.28% 3.42 
ECMO 1.31% 0.17% 7.84 

Table 4 -4 : Capacity usage per patient type 
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Figure 4 -2: Capacity usage visualisation 
 

 

 Distribution fitting 

Realistic representation of patient LOS in the simulation model is ensured by fitting a 

probability distribution to each patient type, from which individual LOS values can be 

drawn to generate the service time per patient in the model. As established in the 

methodology section all historic LOS distributions can be approximated by fitting a range 

of positive right tail distributions (Harper, 2002). In this study historical data was fitted 

with the Lognormal, Weibull, Gamma and Log-logistic distributions using MATLAB. The 

lowest Log-likelihood score was chosen as the criterion to determine the best fit. The 

results are displayed in Table 4-5 below, the histograms with the fitted distribution are 

displayed in Figure D-2 in the appendix. 
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Patient Type Distribution LogL Score Parameters 

STEMI loglogistic -7411.00 γ= 1.924 σ= 0.4624 

Overige lognormal -7702.00 μ= 2.23 σ= 1.051 

CABG* weibull  -4174.00 α= 22.06 β= 2.079 

Ritmestoornissen lognormal -3670.00 μ= 1.767 σ= 1.014 

Aorta* loglogistic  -3316.00 γ= 3.033 σ= 0.4019 

Klep* gamma  -2379.00 α= 2.578 β= 7.449 

NSTEMI lognormal -2819.00 μ= 2.511 σ= 0.9334 

OHCA weibull -3690.00 α= 105 β= 1.343 

Hartfalen weibull -3415.00 α= 71.59 β= 0.9648 

TAVI* loglogistic -2859.00 γ= 3.045 σ= 0.3781 

Cardiology* lognormal  -1731.00 μ= 2.787 σ= 1.192 

Pericarditis gamma -1654.00 α= 1.665 β= 20.38 

Overige TH* lognormal  -737.20 μ= 1.929 σ= 1.102 

Congenital* weibull  -439.70 α= 15.63 β= 1.646 

Endocarditis gamma -568.70 α= 0.8522 β= 69.89 

Thoracotomie* lognormal  -279.90 μ= 2.459 σ= 1.129 

Re-Thoracotomie* weibull  -293.40 α= 37.96 β= 0.955 

HTX* loglogistic  -298.50 γ= 4.476 σ= 0.391 

LOTX* loglogistic  -277.90 γ= 4.608 σ= 0.3161 

Tamponade lognormal -377.70 μ= 3.166 σ= 1.378 

LVAD* gamma  -166.00 α= 1.367 β= 70.02 

ECMO uniform -126.20 min 20.42 max 428 

Table 4 -5 : Distribution fitting results 
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 Patient Arrivals 

 
To develop an understanding of patient arrivals over time at the ICU, as well as to 

determine trends and seasonality, arrivals per arrival type as well as per patient type are 

examined across different time horizons before defining arrival rates that serve as input 

for the model. 

 

 Yearly patient arrivals 

An overview of yearly patient arrivals at the ICU is given in Table 4-6. One can observe 

a slight increase of about 4.5% in overall patient numbers over the years, caused by 

increases in both planned and unplanned patient arrivals. The steady growth observes 

confirms the assumption of increasing patient volume, at this level, however, it does not 

need to be further considered in the simulation model. 

 
 

2012 2013 2014 2015 
Unplanned 1,653 1,661 1,752 1,707 
Planned 970 1,003 985 1,041 
Grand Total 2,623 2,664 2,737 2,748 
     

Unplanned per day 4.53 4.55 4.80 4.68 
Planned per day 2.66 2.75 2.70 2.85 
Total per day 7.19 7.30 7.50 7.53 

              Table 4 -6 : Patient arrivals per kind per year 
 
Breaking down arrivals according to patient type (Table 4-7) reveals two recent 

noteworthy changes, in 2015, TAVI arrivals, a scheduled surgery, jumped up by 34%, 

while the catch-all category Overige saw a 9% drop. Since the Overige category is a catch-

all of various patients the drop could not be explained by the ICU. The rise in TAVI 

patients was due to increased surgeon availability, which led the Erasmus MC to offer 

more TAVI operations. Otherwise, admissions per patient type increase slightly over the 

observed four-year period. 
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Table 4 -7 : Patient arrivals per patient type per year 
 

 
 Monthly patient arrivals 

Drilling further down and examining aggregated average patient arrivals per month reveals 

a slight variation of arrivals between the summer and winter months at first sight (Figure 

4-3), more noticeably for unplanned patients. 

To confirm the presence of seasonality, the data is converted into a time series model and 

decomposed into its trend, seasonal and error components using the stl function of the 

integrated “stats” package in R (R Core Team, 2018). As can be seen in Figure 4-4, a 

yearly seasonal pattern is recognized. Peaks in January, March and October highlight an 

Patient Type 2012 2013 2014 2015 
STEMI 545 447 461 478 
Overige 476 487 478 434 
CABG* 296 297 256 273 
Ritmestoornissen 146 221 283 254 
Aorta* 175 176 222 221 
Klep* 164 176 145 139 
NSTEMI 125 138 170 157 
OHCA 140 144 130 143 
Hartfalen 125 130 138 155 
TAVI* 103 133 127 175 
Cardiology* 77 76 78 85 
Pericarditis 62 55 51 50 
Overige TH* 58 50 52 54 
Congenital* 29 27 32 36 
Endocarditis 16 22 28 20 
Thoracotomie* 20 22 16 11 
Re-Thoracotomie* 14 19 18 12 
HTX* 12 9 18 14 
LOTX* 13 14 14 11 
Tamponade 14 14 9 9 
LVAD* 9 4 7 10 
ECMO 4 3 4 7 
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apparent difference in patient arrivals in winter compared to the summer months, with 

the lowest level being reached in August.  

 
Figure 4 -3 : Patient arrivals per kind per month   
 
 

 
Figure 4 -4 : Seasonal decomposition 
 

Discussing this finding with the ICU revealed that any seasonal differences of patient 

arrivals are most likely due to staffing at the ICU, the dip in the summer months caused 

by reduced staffing in the due to holidays. Thus, the difference in arrivals is not inherent 

to any patient type or characteristic and will not be further considered. 
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 Daily patient arrivals 

Inspecting patient arrivals per weekday reveals a clear pattern which is depicted in Figure 

4-5. Due to no elective surgeries being scheduled on the weekend there is a clear drop in 

overall arrivals at the end of the week. Erasmus MC has an agreement in place with 

Maasstad hospital to balance the workload of emergency patients, on Mondays and 

Thursdays the majority of STEMI and OHCA patients are received by the Maasstad 

hospital, which is why a clear drop of unplanned patient arrivals can be observed.  

 
Patient Type Mon Tue Wed Thu Fri Sat Sun 
STEMI 0.64 1.79 2.13 0.72 1.51 1.28 1.21 
Overige 1.25 2.01 1.62 1.11 1.66 0.70 0.66 
CABG* 1.23 1.21 0.91 0.95 1.00 0.05 0.03 
Ritmestoornissen 1.18 0.35 0.92 0.40 1.04 0.22 0.23 
Aorta* 0.79 0.63 0.73 0.85 0.69 0.06 0.07 
Klep* 0.14 0.69 0.12 1.37 0.18 0.05 0.04 
NSTEMI 0.35 0.50 0.57 0.34 0.51 0.28 0.29 
OHCA 0.42 0.39 0.43 0.39 0.47 0.24 0.29 
Hartfalen 0.25 0.53 0.52 0.31 0.39 0.31 0.38 
TAVI* 0.59 0.64 0.56 0.56 0.61 0.02 0.01 
Cardiology* 0.33 0.34 0.20 0.25 0.22 0.10 0.10 
Pericarditis 0.22 0.21 0.20 0.18 0.16 0.04 0.02 
Overige TH* 0.14 0.12 0.24 0.17 0.20 0.07 0.11 
Congenital* 0.13 0.11 0.17 0.09 0.10 0.00 0.00 
Endocarditis 0.08 0.07 0.05 0.07 0.09 0.02 0.03 
Thoracotomie* 0.02 0.04 0.04 0.03 0.05 0.02 0.04 
Re-Thoracotomie* 0.05 0.04 0.05 0.07 0.04 0.03 0.02 
HTX* 0.05 0.08 0.06 0.07 0.05 0.01 0.01 
LOTX* 0.04 0.03 0.06 0.05 0.01 0.05 0.01 
Tamponade 0.03 0.01 0.06 0.02 0.01 0.00 0.00 
LVAD* 0.05 0.03 0.06 0.03 0.02 0.00 0.02 
ECMO 0.01 0.03 0.01 0.01 0.01 0.01 0.00 

Table 4 -8 : Patient arrivals per patient type per weekday 
 
Studying aggregated average arrivals per patient type per weekday more closely (Table 

4-8) reveals further information about the planning currently done at the Erasmus MC. 

Apart from not being scheduled on the weekends, some planned surgeries have a planning 
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pattern: CABG surgeries are scheduled more often at the beginning of the week and TAVI 

surgeries mostly on Tuesday and Thursday, while the others are evenly spread out over 

the week. The presence of seasonality was confirmed through seasonal decomposition in 

R. Due to the systematic nature of planned surgery variation, it needs to be taken into 

account when creating the simulation of the ICU environment. 

 

 
Figure 4 -5 : Patient admissions per kind per weekday 
 

 
 Hourly patient arrivals 

On an hourly level, the data seasonality is present as well when aggregating average 

patient arrivals (Figure 4-6). After 8 am arrivals rapidly increase to reach their peak at 2 

pm. After 5 pm they rapidly drop and stay relatively low during nighttime (9 pm – 8 am). 

Planned arrivals ramp up later, which can be intuitively explained by the duration of the 

surgeries that patients undergo before admission to the ICU, with the first one usually 

starting at 8 am.  

The rapid increase in arrivals in the span of six hours that can be observed from 8 am to 

2 pm demonstrates the high level of daily variation of patient arrivals. It is thus essential 

to account for it in the simulation model. As laid out in the methodology section, 

segmenting the day into the three different nursing shifts (Shift 1: 12 am – 8 am, shift 2: 

8 am – 4 pm, shift 3: 4 pm – 12 pm) aides the relevancy, as well as the ease of 
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understanding and implementation of the results for the ICU staff. The breakdown of 

patient arrivals aggregated into the three shifts is displayed in Table 4-9, showing 

especially the difference between planned and unplanned in more detail. 

 
Figure 4 -6 : Patient arrivals per kind per hour 
 
 

Patient Type Shift 1 Shift 2 Shift 3 
STEMI 0.2603 0.6137 0.4486 
Overige 0.1774 0.7466 0.3603 
CABG* 0.0082 0.4842 0.2760 
Ritmestoornissen 0.0514 0.3925 0.1753 
Aorta* 0.0199 0.3432 0.1808 
Klep* 0.0048 0.3178 0.1048 
NSTEMI 0.0541 0.1932 0.1568 
OHCA 0.0705 0.1534 0.1575 
Hartfalen 0.0753 0.1658 0.1342 
TAVI* 0.0123 0.2836 0.0726 
Cardiology* 0.0342 0.0986 0.0836 
Pericarditis 0.0158 0.0719 0.0616 
Overige TH* 0.0041 0.0959 0.0466 
Congenital* 0.0000 0.0774 0.0075 
Endocarditis 0.0055 0.0253 0.0281 
Thoracotomie* 0.0007 0.0322 0.0144 
Re-Thoracotomie* 0.0048 0.0199 0.0185 
HTX* 0.0110 0.0164 0.0089 
LOTX* 0.0096 0.0151 0.0110 
Tamponade 0.0055 0.0158 0.0103 
LVAD* 0.0007 0.0151 0.0048 
ECMO 0.0014 0.0048 0.0062 

      Table 4 -9 : Patient arrivals per patient type per shift 
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 Combined seasonality 

 
Close examination of the seasonality patterns at different time levels revealed a number 

of factors that result in unique arrival patterns. At an aggregated level, patient arrivals 

exhibit within-week variation across weekdays and daily variation across the previously 

identified shifts. Figure 4-7 captures the two relevant levels of the time-varying seasonality 

of planned and unplanned patients in one graph, the inherent pattern is clearly visible. 

 

 
Figure 4 -7 : Seasonality pattern overview per patient kind 
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5. HEURISTIC DEVELOPMENT 

Much of the academic literature focusses on improving ICU performance by determining 

an adequate ward size beforehand (Green, 2002) or by applying capacity related 

adjustments, such as flexible bed allocation (Kim et al., 2000, Kao & Tung, 1981). Since 

the capacity of the ICU at the Erasmus MC is fixed, the only levers available to improve 

the performance of the ICU are managing the uncertain variables of patient arrivals and 

patient LOS. 

While unplanned patient arrivals can hardly be influenced, the timing of planned patient 

arrivals can be coordinated with the surgical planner and by moving or dispersing this 

flow of arrivals the overall arrival rate at the ICU can be influenced. The analysis of 

arrivals showed the existence of within-week seasonality for planned patients, certain kinds 

of elective surgery are executed on a specific day at the Erasmus MC, so there certainly 

is a possibility to influence their sequence. For instance, scheduling surgeries of heart or 

lung transplants, which are known to stay more than one day in the ICU, towards the end 

of the week might improve capacity utilization, since there are no new incoming planned 

surgeries during the weekend. On the other hand spikes of arrivals caused by unplanned 

patients can be smoothed out by moving the planned patient load accordingly. Therefore, 

the heuristic to be developed and tested in this research will be an “Arrival smoothing 

heuristic”, which aims to balance ICU capacity use by distributing planned patient arrivals 

across the week according to their LOS characteristics as well as the levels of unplanned 

patient load. 
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 Arrival Smoothing Heuristic 

 

 Requirements 

Manipulating the influx of planned patients is one of the few levers that has a direct 

impact on ICU capacity usage at the disposal of the ICU. Achieving a better balance of 

patient load across the week will decrease the number of times the ICU fills up, which 

entails a reduction in the number of patients that need to be discharged prematurely. In 

order to consciously distribute planned patient arrivals across the days of the week, it is 

necessary to combine the previously analysed statistics to better quantify the planned and 

unplanned patient load per weekday since the patient arrival rate only is not the right 

proxy for ICU patient load. This is due to the implications of the second uncertain 

variable, LOS. The majority of patients leaves within 24 hours, while other patients 

(OHCA patients for example) occupy a bed for multiple days and thus have a larger 

impact on ICU capacity use. Since both the surgery scheduler and the ICU work with a 

one-week planning horizon, the end result of the heuristic will be a suggested daily surgery 

quota for each day of the week. As explained in the methodology section, there is no 

forward-looking schedule of elective surgeries. Consequently, it is necessary to return to 

the classification and characteristics of planned patients to define a weekly arrival pattern 

for planned patients before moving on to the calculation of the patient loads. 

 

 Planned patient schedule development 

The detailed patient type categorization in place does not allow for a straightforward 

definition of a weekly elective surgery schedule. The categorization of planned patients 

into 12 different types results in small patient groups with low patient arrivals per type 

per weekday (see Table 4-8) as well as irregular patient arrivals per week (see CoV in 

Table 5-1). These two factors impede the definition of an integer weekly planned patient 
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schedule per patient type, it is required to aggregate these patient types in order to arrive 

at a reliable weekly schedule for planned patients. 

 

Patient Type Average Weekly Arrivals St. Dev. CoV 
Aorta 3.81 1.92 0.51 
CABG 5.36 2.29 0.43 
Cardiology 1.54 1.35 0.88 
Congenital 0.59 0.88 1.48 
HTX 0.27 0.54 2.02 
Klep 3.00 1.73 0.58 
LOTX 0.26 0.49 1.90 
LVAD 0.17 0.40 2.34 
Overige TH 1.04 1.12 1.08 
Re-Thoracotomie 0.32 0.57 1.79 
TAVI 2.60 1.63 0.63 
Thoracotomie 0.34 0.64 1.87 

Table 5 -1: Planned patient arrivals per week 
 

As a reminder, the categorization of patients served to reduce the within-group variation 

of LOS, the uncertain service time of patients in the ICU. This aim needs to guide the 

aggregation of patient types as well, arrivals may only be merged if the patient types 

exhibit the same LOS characteristics.  

Patient Type Average Median Max StDev CoV Group 
LOTX 113 100 342 64.88 0.57 

1 HTX 107 83 336 75.89 0.71 
LVAD 95 67 410 88.40 0.93 
Re-Thoracotomie 38 22 228 42.99 1.12 

2 
Cardiology 31 19 207 39.15 1.27 
TAVI 25 22 139 21.56 0.87 

3 
Aorta 26 21 119 21.59 0.83 
Thoracotomie 20 18 108 23.23 1.14 

4 CABG 19 20 66 9.80 0.51 
Klep 19 20 72 12.26 0.65 
Congenital 13 14 27 8.56 0.63 

5 
Overige TH 12 5 76 14.33 1.21 

Table 5 -2: Planned patients LOS statistics 
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Inspecting the LOS statistics of all planned patients indicates that five subgroups seem to 

have comparable LOS characteristics (Table 5-2). This observation needs to be validated, 

the appropriate test to establish if two populations are comparable is the t-test. While the 

standard students’ t-test assumes equal variances and an underlying normal distribution 

of the population, research by Fagerland & Sandvik (2009) has shown that the modified 

Welch-t-test, which assumes unequal variances, is suited for skewed distributions. Table 

5-3 shows the results of the respective t-tests, the high p-values confirming that the patient 

types exhibit similar LOS characteristics and may be merged. 

 

Welch two-sample T-test t df p Group 
HTX & LOTX -0.74 95.72 0.46 

1 HTX & LVAD 0.70 49.17 0.49 
LVAD & LOTX -1.28 44.42 0.21 
Cardiology & Re-Thoracotomie -1.55 75.55 0.12 2 
TAVI & Aorta 0.29 1071.50 0.77 3 
CABG & Klep 0.42 1004.00 0.67 

4 Klep & Thoracotomie -0.61 67.97 0.55 
Thoracotomie & CABG -0.53 65.36 0.60 
Congenital & Overige TH 1.09 317.95 0.27 5 

Table 5 -3 : Aggregation T-Tests 
 
 

Comparing the LOS histograms of each type with the LOS distribution of the respective 

merged group confirms the merge visually (Figure 5-1). Each group has a comparable 

distribution of LOS, characterized by similar peaks and maxima, which translate well into 

the overall group LOS histogram. The resulting groups strike a balance between reducing 

the weekly arrival variability through aggregation and still differentiating patients by LOS 

characteristics. Due to the fact that the LOS distribution shows distinctive peaks at one-

day intervals, indicating regular discharges, the LOS of each group will not be fitted with 

a distribution, the merged historical LOS distributions will be used as empirical 

distributions. 
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Figure 5 -1: Group LOS Histograms 
 

As expected, the weekly arrivals of the newly created groups are less variable compared 

to the individual patient types they are composed of (see the CoV of Table 5-4 below). 

The planned patient schedule resulting from the arrival smoothing heuristic should provide 

sufficient slots to meet surgery demand. The number of weekly surgeries required per 

patient group is approximated by rounding the historical weekly average to the nearest 

integer. The total of the rounded weekly arrivals of the aggregated groups is 20, historically 

the ICU recorded 19.22 planned patient arrivals per week. Considering that four of the 

patient groups needed to be slightly overstated, the approximation seems appropriate. The 

historical arrival rates per weekday are listed in Table 5-5 and are required in the next 

step of the heuristic development, the calculation of patient load. 
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Patient Group Avg Weekly Arrivals Rounded Arrivals St. Dev. CoV 
1 0.65 1 0.78 1.20 
2 1.82 2 1.41 0.77 
3 6.38 6 2.55 0.40 
4 8.75 9 2.65 0.30 
5 1.62 2 1.43 0.88 

Table 5 -4 : Aggregated weekly arrivals 
 

Patient Group Mon Tue Wed Thu Fri 
1 0.18 0.17 0.29 0.20 0.16 
2 0.47 0.47 0.33 0.40 0.33 
3 0.91 1.28 0.83 2.12 0.86 
4 1.96 2.03 1.61 1.66 1.74 
5 0.45 0.41 0.47 0.34 0.33 

Rounded Grand 
Total 

4 4 3 5 3 

Table 5 -5 : Daily arrival rates of planned patient groups 
 
 

 Patient Loadfactor estimation 

The parameter that indicates how many patients are in the ICU on average each weekday 

will be called “Loadfactor” and needs to be calculated using the previously developed 

estimates of arrival rates and LOS. The first component of the Loadfactor is the average 

number of daily patient arrivals, here the average rates calculated as part of the statistical 

analysis (refer to Table 4-8 & Table 5-5) can be used and do not need to be adjusted.  

Next, it is necessary to quantify the average capacity the patients occupy after their arrival 

by incorporating their LOS. Once again, using average values of LOS is not appropriate 

and would not give an accurate result due to the variable nature of LOS across patients. 

On the basis of the statistical analysis of LOS, it is possible to make use of the so-called 

“Survival Analysis” to quantify the impact of LOS. As the name implies, this technique is 

usually applied to study the survival time or time until failure of subjects. However, it can 

also be applied to more positive “time remaining” scenarios, such as the time to recovery 

of the ICU patients represented by the LOS in this research.   
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Survival analysis is based on the properties of the probability distribution of the “time 

remaining” data. The “cumulative distribution function” (1) of a probability distribution 

can be used to evaluate the probability of an uncertain variable being lower or equal to a 

given value.  

(1) A(*) = B(C) ≤ * 

 

Taking the inverse of this function results in the “survivor function” (2), which can be 

used to find the probability of the uncertain value being larger than the evaluated point. 

In other words, it will represent the share of patients who have not recovered yet at the 

evaluated point in time when applied to the data at hand and will be essential to calculate 

the Loadfactor. 

(2) #(*) = 1 − A(*) 

 

The survival function can be estimated from any fitted parametric distribution. Since it 

will be calculated for the merged planned patient groups as well, an empirical alternative 

based on the historical data is preferred. A common method to estimate the survival 

function from non-parametric empirical data is the “Kaplan-Meier Method”. It calculates 

the survival rate from a given “time remaining” table across time and estimates the 

survival function. This method was applied to the LOS data per patient type using 

MATLAB. Plots of the survival functions can be found in the appendix (Figure D-3). 

Next, the resulting survival functions were used to estimate the average daily probability 

per patient type of remaining in the ICU was calculated. The resulting probabilities of 

stay in the ICU are listed in the appendix (Table D-1 & Table D-2). With the arrivals 

and probabilities of stay in place, the Loadfactor can be calculated. 
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The Loadfactor calculation takes advantage of the fact that the within-week variation is 

the highest level of seasonality that is being considered. It follows that the Loadfactor of 

a certain weekday is the sum of the average arrivals on that day and the remaining patients 

of previous days. The calculation is visualised in Table 5-6 below. 

 

Day Loadfactor Arrivals +1 Day +2 Days +3 Days +4 Days +n Days 

Mon ∑ G5H8 G3I8 ∗ #(1) G37K ∗ #(2) GLMN ∗ #(3) GPQI ∗ #(4) … 

Tue ∑ GPI6 G5H8 ∗ #(1) G3I8 ∗ #(2) G37K ∗ #(3) GLMN ∗ #(4) … 

Wed ∑ GR6S GPI6 ∗ #(1) G5H8 ∗ #(2) G3I8 ∗ #(3) G37K ∗ #(4) … 

Thu ∑ GPQI GR6S ∗ #(1) GPI6 ∗ #(2) G5H8 ∗ #(3) G3I8 ∗ #(4) … 

Fri ∑ GLMN GPQI ∗ #(1) GR6S ∗ #(2) GPI6 ∗ #(3) G5H8 ∗ #(4) … 

Sat ∑ G37K GLMN ∗ #(1) GPQI ∗ #(2) GR6S ∗ #(3) GPI6 ∗ #(4) … 

Sun ∑ G3I8 G37K ∗ #(1) GLMN ∗ #(2) GPQI ∗ #(3) GR6S ∗ #(4) … 

Table 5 -6 : Loadfactor calculation 
 
 
 
 

 

Table 5 -7 : Loadfactor results 
 

Studying the results (Table 5-7) reveals unsurprisingly that the Loadfactor is higher than 

the arrival rate across the week and that it follows the same trend as the daily arrival 

rate, with the patient load peaking on Wednesdays and Fridays and low levels over the 

weekend. This is due to the fact that the majority of patients leave within the day, leading 

to pronounced peaks translating to the Loadfactor as well.  

 
A closer look at the percentage change from one day to the next of the unplanned patient 

arrival rate and the Loadfactor (Figure 5-2) shows a comparatively lower rate of both 

 
Mon Tue Wed Thu Fri Sat Sun 

Unplanned Patient Load 6.20 7.73 8.94 6.27 8.11 5.70 5.28 
Planned Patient Load 4.57 5.72 5.26 6.49 5.66 1.97 1.02 
Total Loadfactor 10.77 13.45 14.20 12.77 13.76 7.67 6.30 
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increases and decreases. This lag exemplifies that the Loadfactor is able to account for 

patients staying in the ICU and concludingly is a better representation of unplanned 

patient capacity usage, a necessary basis from which to determine the optimal planned 

patient allocation.  

 

 
Figure 5 -2: Arrival rate and Loadfactor day-to-day change comparison (unplanned patients) 
 
 
For the heuristic being developed, the unplanned patient Loadfactor is an important 

parameter, since it is assumed to be fixed and the proposed planned patient schedule 

should balance it out. The total Loadfactor serves as the benchmark of the historical 

weekly load distribution. 

 

 Planned patient schedule development 

As part of the Loadfactor calculation, the survival function of the merged planned patient 

groups was calculated as well (Table D-2). These listed probabilities in conjunction with 

the number of surgeries per weekday determined by a proposed schedule will define the 

Loadfactor increase that needs to be distributed across the week. an overview of the total 

load per patient group is given in Table 5-8.  

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

Sun-Mon Mon-Tue Tue-Wed Wed-Thu Thu-Fri Fri-Sat Sat-Sun

Arrival Rate Loadfactor



 50 

 
Patient Group Group 1 Group 2 Group 3 Group 4 Group 5 

Number of  
required surgeries 1 2 6 9 2 

Total additional load 4.85 3.66 9.03 10.87 2.30 
Table 5 -8 : Planned patient load increase 
 

It follows from the aim of the arrival smoothing heuristic that this increase should be 

balanced with the calculated unplanned patient load and minimized across each weekday 

to reduce the chances of the ICU reaching its capacity limit. The right method to define 

a planned patient schedule that meets this balance is optimization using integer 

programming.  

 
 Optimization problem formulation 

 
Sets 

Planned	Patient	Groups:			d = 	 {1,2,3,4,5}       (1) 

Weekdays:																													l = {1,2,3,4,5,6,7}      (2) 

Length	of	Stay:																					t = {0,1,2,3, … ,13}      (3) 
 
Parameters 

SN = Number	of	weekly	required	surgeries	for	group	i,	∀i	∈	G		 	 	 	 (4) 

C| = Daily	surgery	capacity	on	day	j	,	∀j	∈	D		 	 	 	 	 	 (5)	

UL| = Unplanned	patient	Loadfactor	on	day	j	,	∀j	∈	D		 	 	 	 	 (6)	

RL| = Remaining	patient	Loadfactor	on	day	j	from	previous	week,	∀j	∈	D		 	 (7)	

M| = Capacity	limit	of	the	ICU	on	day	j		 	 	 	 	 	 	 (8) 

BNÖ 	= 	Probability	of	group	i	to	remain	at	the	ICU	after	k	days	, ∀i	 ∈ 	d, ∀k ∈	A	 (9) 
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Decision Variables 
 

CN| 	= 	number	of	surgeries	of	group	i	scheduled	on	day	j	, ∀i	 ∈ 	d, ∀j	 ∈	D		 	 (10) 

 
Objective Function 
 
 

,)&à((!| + ä!| +ààCN|ãÖ ∗ BNÖ

|ãå

ÖçéN∈è|∈4

)ê (11)	

Constraints 

Surgery number: àCN| = #N
ë	∈	4

	 , ∀i	 ∈ 	d 	 (12)	

   
No surgeries on 
the weekend: 

àCN| = 0
í	∈	è

	 , ∀i	 ∈ 	d, ì1î	j = 6	ï&'	7 (13) 

   

Surgery capacity: àCN| ≤ 0|
í	∈	ñ

	 , ∀j	 ∈ 	l (14) 

   

ICU capacity 
∑ (ä!| + (!| + ∑ ∑ CN|ãÖ ∗ BNÖ

|ãå
Öçé )N∈è ≤ ó|,|∈4   

∀i	 ∈ d, ∀j	 ∈	D,	∀k	 ∈	A 
(15) 

   
Definition of RL|   

 

 

ä!å =à(CNò
N∈è

∗ BNô + CNö ∗ BNö + CNô ∗ BNò + CNê ∗ BNõ + CNå ∗ BNú + CNò ∗ BNåé

+ CNö ∗ BNåå + CNô ∗ BNåê + CNê ∗ BNåô), ∀i	 ∈ 	d 
 
ä!ê =à(CNò

N∈è

∗ BNö + CNö ∗ BNò + CNô ∗ BNõ + CNê ∗ BNú + CNå ∗ BNù + CNò ∗ BNåå

+ CNö ∗ BNåê + CNô ∗ BNåô), ∀i	 ∈ 	d 
 
ä!ô =à(CNò

N∈è

∗ BNò + CNö ∗ BNõ + CNô ∗ BNú + CNê ∗ BNù + CNå ∗ BNû + CNò ∗ BNåê

+ CNö ∗ BNåô), ∀i	 ∈ 	d 

(16) 
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ä!ö =à(CNò

N∈è

∗ BNõ + CNö ∗ BNú + CNô ∗ BNù + CNê ∗ BNû + CNå ∗ BNåé + CNò

∗ BNåô), ∀i	 ∈ 	d 
 
ä!ò =à(CNò

N∈è

∗ BNú + CNö ∗ BNù + CNô ∗ BNû + CNê ∗ BNåé + CNå ∗ BNåå), ∀i	 ∈ 	d 

 
ä!õ =à(CNò

N∈è

∗ BNù + CNö ∗ BNû + CNô ∗ BNåé + CNê ∗ BNåå + CNå ∗ BNåê), ∀i	 ∈ 	d 

 
ä!ú =à(CNò

N∈è

∗ BNû + CNö ∗ BNåé + CNô ∗ BNåå + CNê ∗ BNåê), ∀i	 ∈ 	d 

   
Non-negativity: CN| 	≥ 0			, ∀i	 ∈ 	d, ∀j	 ∈	D (17) 
   
Integer: CN|	)†	)&*%/%î	, ∀i	 ∈ 	d, ∀j	 ∈	D (18) 

 

The decisions of this integer programme are taken across three separate sets, the planned 

patient groups (1), the seven days of the week (2), and the length of stay (3), which is a 

range of 0 until 13 days, since patients of group 1 may stay up to 13 days in the ICU. A 

range of parameters needs to be considered when finding the optimal solution, starting 

with the numbers of surgeries required per patient group (4), set by the rounded arrivals 

in Table 5-4. Next, the maximum number of surgeries per day needs to be considered (5), 

which the Erasmus MC set to five, as well as the overall capacity limit of the ICU, which 

is 16 (6). A fixed parameter in this model is the unplanned patient Loadfactor on each 

day of the week (7), listed in Table 5-7. As described in section 5.1.3, the total Loadfactor 

is composed of patient arrivals and the share of patients that remained in the ICU more 

than one day. In order to facilitate the formulation of the objective function, the 

optimization problem aggregates the load of all patients that arrived during a previous 

weekly period in the parameter (8), this parameter is influenced by the decision variable, 

a dynamic that will be explained later on in this section. The final parameter is the 
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probability per patient group of reaching a certain LOS, which was derived from the 

survival function (9), this parameter is listed in Table D-2 of the appendix.  

 
The decision variables that can be manipulated are the number of surgeries per patient 

group to be scheduled on each day of the week (10). The objective function minimizes the 

sum of squared Loadfactors (11). The Loadfactor sum per day consists of three different 

components, of which the unplanned patient Loadfactor is the only one that is constant. 

The second component is the total load remaining from an earlier week, defined by a 

constraint as explained in the next paragraph. The third and last component of the sum 

is the planned patient load increase which is calculated by summing the product of the 

surgeries scheduled on that day and of all previous days of that week with the respective 

probability of still remaining in the ICU. By minimizing the summed square of the daily 

Loadfactor it forces the distribution of the additional patient load to be as even as possible, 

penalizing high values and thus peak loads. This, in turn, leads to the planned patient 

load balancing out the unplanned patient load across the week, since the unplanned load 

per day is fixed. Another characteristic of the objective function formulation is that it 

incentivizes moving patient load onto the weekend, which has a lot of free capacity. There 

are no planned patient arrivals during the weekend, so its load is entirely determined by 

the “patients remaining” load from earlier days and the constant unplanned load. Since 

the sum of squares is optimized and workdays have a much higher Loadfactor (see Table 

5-7), the most effective way to minimize the objective function is to decrease and even out 

the load during workdays as much as possible by moving load onto the less utilized 

weekend. The only way to do this is by scheduling long stay patients on Fridays, which 

pushes their “remaining patient” load onto the weekend.  
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A number of constraints ensure that a feasible solution is found, the first one (12) sets the 

number of required surgeries per patient category, the second one (13) prevents surgeries 

being scheduled on the weekend. Capacity limits are enforced by (14), the daily surgery 

limit (which on Friday is essential to keep the weekend workload increase manageable) 

and (15), which makes certain that the total Loadfactor on a certain day does not exceed 

the overall capacity limit of the ICU. This constraint is only included for good measure, 

it will not be binding because the Loadfactor never represents actual patient numbers at 

the ICU, but the expected average amount of patients at the ICU. This value does not 

reach the capacity limit of 16 at any point (Otherwise the utilization of the ICU would be 

over 100% in reality). Constraint (16) creates the link between the remaining patient 

loadfactor from a previous period and the schedule as determined by the optimization. 

Since the schedule found by solving the optimization problem will repeat itself every week, 

the decision variable does not change across weeks and the remaining patient load from 

previous periods can be defined as the share of surgery patients scheduled from Monday 

to Friday that stay until a new week begins. Taking Monday as an example, ä!å includes 

the share of patients that arrived the Friday before that are still in the ICU after three 

days (CNò ∗ BNô) up until the share of patients who arrived on a Tuesday and are reaching 

their thirteenth day of stay in the ICU (CNê ∗ BNåô). This inclusion guarantees that the full 

extent of the planned patient Loadfactor is considered and that the schedule generated for 

a single week is truly considered as an infinitely repeating weekly schedule. Finally, (17) 

and (18) are the necessary integrity constraints that define the decision variable as being 

non-negative and integer. 

 

A solution for the stochastic and continuous problem of capacity allocation can only be 

found by restricting the solution finding to a specific period that can then be generalised 

across time. This is why the solution finding process was restricted to a weekly time 
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horizon at the beginning of this chapter, based on the finding that the highest level of 

relevant seasonality was within week seasonality and the fact that the ICU uses a one-

week planning horizon in practice. For the optimization problem described here, this 

entails a number of conditions that define a stable state in order to guarantee that it is 

able to find an optimal solution according to the KKT condition: 

• ICU capacity does not change from week to week 

• Surgery capacity does not change from week to week 

• Unplanned patient load does not change from week to week 

• The number of surgeries to be scheduled does not change from week to week (which 

implies an unchanged additional planned patient Loadfactor per week) 

 

 The result of the optimization problem 

The optimization problem detailed in the previous section was solved using the Solver 

package of Microsoft Excel. The package is able to solve integer programmes, which are 

harder to compute than linear programmes, by utilizing the “branch and bound” 

algorithm, which separates the solution set into subsets (“branches”) and only 

exhaustively tests possible solutions if a branch is within certain bounds of the current 

optimal solution. The default setting of this non-linear solution approach in Solver is set 

to allow a 1% tolerance around the integer optimal result, this parameter was reduced to 

0% in order to find the true optimal solution. The optimal value of the objective function 

after optimization is 930.39, the more relevant and insightful results are listed in Table 5-

9, 5-10 and 5-11. Inspecting the Loadfactor distribution across the week (Table 5-9) reveals 

that the additional planned patient load was evenly balanced across the days of the week. 

Wednesday and Friday remain peak days, however, the difference compared to the rest of 

the week was diminished. Compared to the historical distribution the largest deltas are on 

Monday, Tuesday and Wednesday. 
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Table 5 -9 : Optimization result 1, Loadfactor distribution 
 

Table 5-10 depicts how the integer programme scheduled the majority of surgeries on 

Mondays and Thursdays, which had the lowest workday load scores originally. 

 

Table 5 -10 : Optimization result 2, surgeries scheduled per weekday 
 

Diving deeper into the proposed schedule by examining the allocation per patient group 

(Table 5-11) confirms the earlier hypothesis that long LOS surgeries should be scheduled 

towards the end of the week. The resulting optimal schedule places surgeries that result 

in long LOS (Groups 1 & 2) on Fridays, moving their load onto the less busy weekend. 

Surgeries resulting in short LOS (Group 5 & 4) are scheduled on Tuesdays, in order to 

reduce the load that carries over into Wednesday, which is a peak load day.  

 

Patient Group Mon Tue Wed Thu Fri 
1 0 0 0 0 1 
2 0 0 0 0 2 
3 0 0 0 5 1 
4 5 1 3 0 0 
5 0 2 0 0 0 

Table 5 -11: Optimization result 3 , the surgery schedule per patient group 
 
By removing the unplanned patient Loadfactor as well as the Loadfactor increase on the 

first day by planned patients (which is equal to the arrival rate) from the daily total it is 

possible to investigate how the optimization diverted the load of all planned patients that 

Day Mon Tue Wed Thu Fri Sat Sun 
Historical Loadfactor 10.77 13.45 14.20 12.77 13.76 7.67 6.30 
Optimized Loadfactor 12.31 12.36 12.94 12.19 13.90 8.27 6.97 

Day Mon Tue Wed Thu Fri Sat Sun 
Unplanned Patient Loadfactor 6.20 7.73 8.94 6.27 8.11 5.70 5.28 
Planned surgeries scheduled 5 3 3 5 3 0 0 
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remain at the ICU for more than one day. Looking at this value exclusively visualises the 

effect of the changes described in the previous paragraph. Figure 5-3 highlights the 

differences between the “remaining patient” load of the historical and optimized patient 

distribution, the shift onto the weekend and the mid-week load reduction becomes evident. 

 

Figure 5 -3 : Diversion of remaining patient load 
 

In order to execute the optimization, the variable patient load was transformed into the 

deterministic Loadfactor. The effect of the arrival smoothing heuristic developed here on 

the bumping rate needs to be tested in the variable ICU environment and compared to 

the base case. This is accomplished by creating a representative simulation of the ICU at 

the Erasmus MC. 
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6. VALIDATION 

 The Simulation 

The simulation allows examining “What if?” scenarios and testing the effectiveness of the 

arrival smoothing heuristic (referred to as the ASH from now on) to improve the capacity 

management of the ICU. Discrete event simulation was found to be able to appropriately 

represent the dynamics of the ICU environment (Günal & Pidd, 2010). It is defined by 

events that change the state of the system, in the case of the ICU these events are the 

arrival and departure of patients. Thus, while the simulation time will be defined by actual 

days and hours, the simulation will always skip to the occurrence of the next event until 

the overall run is completed. The Java-based software AnyLogic (v. 8.3.2) was used to 

build the model, which is a simulation package well suited to model agent based (patients 

in this case) discrete event environments. Similarly to the integer programme, the 

simulation makes use of the previously estimated arrival rates and LOS statistics. Before 

the simulation model can be conceptualized it is necessary to describe how the results of 

the statistical analysis were integrated. 

 

 Arrival rate definition –  unplanned patients 

The analysis of unplanned patient arrival patterns revealed that there is an overall time-

based seasonality of patient arrivals, as well as arrival differences exhibited by certain 

patient types only (e.g. caused by the deviation of patients of a certain type to another 

hospital). Thus, each patient type is considered separately when defining the arrival rates. 

As discussed, the within-week and within-day differences are being considered, leading to 

a total number of 7*24=168 arrival rates per patient type. Since unplanned patients are 

differentiated into 10 categories, the number of arrival rates that need to be defined is 

1,680. The λ parameter of each Poisson distribution necessary for the simulation was 
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calculated based on the historical average per each timeslot, the results are visually 

summarized in Figure C-1 of the appendix. 

 

 Arrival rate definition –  planned patients 

Considering planned patient arrivals in the simulation necessitates the definition of an 

integer allocation of planned patients per group per day for the base case. The distribution 

across the days of the week was done by mirroring the historical average arrivals per 

weekday per group as closely as possible. The rounded of the total surgeries per group 

allocated this way matches the total optimized by the ASH. The result can be seen in 

Table 6-1.  
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Patient Group Mon Tue Wed Thu Fri 
1 0.18 0.17 0.29 0.20 0.16 
2 0.47 0.47 0.33 0.40 0.33 
3 0.91 1.28 0.83 2.12 0.86 
4 1.96 2.03 1.61 1.66 1.74 
5 0.45 0.41 0.47 0.34 0.33 

Rounded Grand 
Total 

4 4 3 5 3 
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1 0 0 1 0 0 
2 1 1 0 0 0 
3 1 1 0 3 1 
4 2 2 1 2 2 
5 1 0 1 0 0 

Grand Total 5 4 3 5 3 
Table 6 -1: Approximated weekly schedule of planned patient arrivals 
 

As explained in the methodology section, the time of arrival on a certain weekday will be 

simulated by queuing arriving patients at 8 am and delaying them by the surgery duration. 

Surgery duration ranges were provided by the Erasmus MC, due to the lack of details a 

triangular distribution of the minimum, maximum and mode is assumed (Table 6-2). 
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Patient Group Types Min Mode Max 
1 HTX, LOTX, LVAD 5.5 6 7 
2 Cardiology & Re-Thoracotomie 3 5 7 
3 TAVI & Aorta 4 4.5 6 
4 CABG, Klep, Thoracotomie 3 4 4.5 
5 Congenital & Overige 3 4 6 

Table 6 -2: Surgery durations 
 

 Length of stay 

Length of stay can be considered by the simulation model using the fitted distributions 

developed in 4.2.3. For certain LOS distributions the overall fit of the fitted distributions 

is unsatisfactory (see Figure D-2, e.g. Pericarditis and the planned patient types), here the 

simulation resorts to using the historical LOS data as empirical distribution. 

 

 Simulation logic 

Implementing the results of the statistical analysis assures an accurate representation of 

the parameters influencing the ICU. The physical restrictions, in addition to the 

operational dynamics of the ICU, need to be modelled closely as well in order to arrive at 

an accurate simulation of the ICU environment. Server capacity in the service system at 

hand is the number of available staffed ICU beds. The maximum possible capacity is 

assumed to be fixed, the theoretical maximum of 18 beds after the ICU move is reduced 

to 15. Two beds are not suitable due to having limited equipment and no sunlight. In 

order to account for the removal of the top 5% of patient records that were characterized 

as outliers, an additional bed is removed from the analysis. The availability of nurses, 

which can restrict available capacity, is not modelled due to missing information on 

staffing in the new ICU unit. Moving on to the patient journey, one source block per 

unplanned patient category is connected to a schedule that lists the Poisson arrival 

parameters for each hour of the week of its type, which is cycled through for all simulated 
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weeks. According to the current simulation time, arrivals are then generated from the 

corresponding Poisson distribution. Planned patient arrivals are incorporated by 

generating the number of patients per week per group and then distributing them across 

the days of the week according to the quota defined by the schedule at 8 am each day. 

These patients enter a delay block that represents the surgery theatre, which accepts three 

simultaneous patients. The delay time is set by drawing the surgery duration from a 

triangular distribution that represents the duration range provided by the Erasmus MC 

(Table 5-11).  

Patients that arrived at the ICU advance to the “Bed Allocation” block. Here, a function 

is called that evaluates the current state of the system. If there is sufficient capacity to 

accommodate the patient he is allocated to a bed and advances if not, the current patient 

population is examined and the patient with the lowest remaining length of stay 

(representing the “healthiest patient”) is bumped and the new patient is admitted. The 

bumping event is recorded and marked in the simulation timeline as well. 

All admitted patients advance to the Length of Stay delay block. Here the LOS (which 

represents service time in the ICU system) is drawn from the respective patient type 

probability distribution. The LOS sets the moment of discharge of the patient, once that 

point in time is reached, the patient leaves the system and the occupied server (the patient 

bed) becomes available for new patients. The following statistics are recorded in order to 

evaluate the validity of the model as well as the effectiveness of the ASH: 

• The number of arrivals generated per patient type 

• The generated LOS distribution per patient type 

• The number of patients in the system 

• The number of Bumping occurrences 
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Screenshots of the simulation model are included in the appendix, it has three different 

views: the routing logic (Figure E-1), the statistical backbone (Figure E-2) and the 

performance dashboard (Figure E-3). The logic flow of the simulation is summarized in 

Figure 6-1 below as well. 

 

 
Figure 6 -1: The Simulation model 
 

 Simulation model assumptions 

A number of assumptions that underpin the model are mentioned here:  

• Recorded arrivals at the ICU represent departures of other internal entities, such 

as the operating theatre and emergency room. Thus, it is assumed that the recorded 

historical admission rates represent the true arrival rates at the ICU. 

• Since the ICU receives emergency patients with acute conditions every unplanned 

patient needs to be admitted & cared for.  

• It is a policy of the Erasmus MC to not cancel surgeries, only delays are possible. 

• The time-varying Poisson arrival assumption for unplanned patients holds. 

• The approximation of planned patient arrivals holds. 
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• Patient arrivals per type are assumed to be independent of each other. 

• Beyond the Seasonal/Weekly/Daily pattern, no other seasonality pattern influences 

patient arrivals. 

• The fitted LOS distributions accurately model the patients’ service time. 

• A triangular distribution of the surgery duration ranges is representative. 

• Beds become immediately available for a new patient once the previous occupant 

has been discharged. 

• The remaining LOS of a patient is representative of his level of health. 

 

 Base case validation 

Before testing the effect of the ASH, the ability of the model generate accurate arrivals 

and LOS is validated. The simulation is set to run for exactly one year, a timeframe that 

ensures that the ICU model reaches a stable setting after a run-in period. Furthermore, in 

order to accurately account for the stochastic environment of any statistic, the simulation 

was run 100 times per case and since around 2700 patients are generated in one year, it 

thus includes 270.000 unique draws from both the arrival and LOS distributions using 

different seeds. 

The validation is done by comparing the number of generated arrivals per patient category 

as well as the generated LOS distributions per patient category to historical values. The 

comparison of average yearly historical arrivals and the results of the simulation can be 

examined in  

Table 6-3. It can be concluded that the time-varying Poisson arrival rate implemented in 

the simulation model is able to generate an accurate number of arrivals per unplanned 

patient type per year.  
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Table 6 -3 : Validation of unplanned patient arrivals 
 

An important characteristic of patient arrivals is the exhibited seasonality. As explained 

in section 4.2, the varying degrees of seasonality per hour and weekday need to be 

incorporated in the time-varying arrival rate. Examining the historical average of arrivals 

per shift in comparison to an exemplary simulation run (Figure 6-2) reveals that, while 

certain peaks are more pronounced (The stark difference on Mondays is due to the rounded 

planned patient schedule), the simulation is able to mirror the within-week variation. 

 
Figure 6 -2: Validation of seasonality 
 
The second uncertain variable that needs to be approximated by the simulation is the 

patient LOS. Table 6-4 & Table 6-5 compare three characteristics, namely the average, 
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Patient type Historical 
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Simulated 
arrivals 

STEMI 483 480 
Overige 469 475 
Ritmestoornissen 226 235 
NSTEMI 148 132 
OHCA 139 147 
Hartfalen 137 129 
Pericarditis 55 61 
Endocarditis 22 20 
Tamponade 12 11 
ECMO 5 7 
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maximum and standard deviation of historical patient LOS per patient category with the 

results generated by the simulation model. The resulting values validate that the 

simulation is able to accurately model patient LOS. 

 

 

 

 

 

 

 

 
Table 6 -4 : Validation of unplanned patient LOS distributions 
 

 

 

 

Table 6 -5 : Validation of planned patient LOS distributions 
 

 Test of the arrival smoothing heuristic 

Following the successful validation of the simulation model, the effect of the ASH can be 

tested and compared to the base case. The simulation is able to generate the previously 

unobserved patient bumping variable in the new ICU setting, it counts the number of 

bumps as well as the percentage bumprate, taking into account the total number of 

patients received.  

As described earlier, a bump occurs when a patient arrives at a full ICU. The ASH aims 

to reduce the chances of the ICU filling up by balancing the Loadfactor of planned and 

Patient Type Historical Simulated 
Average Max SD Average Max SD 

ECMO 194.28 436 143.82 189.50 475.85 126.40 
OHCA 95.94 305 68.36 90.76 282.26 65.67 
Hartfalen 67.54 335 69.53 69.40 332.70 72.52 
Endocarditis 51.77 180 46.56 50.56 175.19 45.72 
Tamponade 33.30 115 49.23 29.93 140.35 36.24 
Pericarditis 27.45 135 26.39 28.39 135.61 28.46 
NSTEMI 17.65 77 17.01 18.73 72.19 18.45 
Overige 14.58 79 15.78 14.69 75.76 15.92 
STEMI 11.02 81 14.11 11.48 85.63 13.90 
Ritmestoornissen 9.90 76 13.54 10.44 75.92 13.70 

Patient Group Historical Simulated 
Average Max SD Average Max SD 

1 105.37 410.15 74.92 103.07 388.75 81.46 
2 31.38 228.43 38.82 28.94 162.68 35.60 
3 26.68 138.02 21.73 26.01 138.70 23.59 
4 19.73 108.12 11.55 19.75 92.52 11.98 
5 13.12 76.98 12.74 12.61 76.13 11.31 
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unplanned patients. Implementing the schedule found by the optimization programme it 

is possible to test if it improves on the base case. For that matter, the base case scenario, 

as well as the optimized setting were run 1000 times using random seeds (thus each run 

represents a unique combination of the included stochastic variables). The runs resulted 

in average bumprates of 2.98% and 2.37% (Table 6-6) respectively, which represents a 

significant reduction of 20.47% and proves that the ASH is able to improve ICU capacity 

management. The shift of the number of bumps between the two scenarios can be 

inspected on the histogram (Figure 6-3) comparing the frequency distribution of bumping 

occurrences.  

 

 
 
 
 
 
Table 6 -6 : Arrival smoothing heuristic performance 
 

 
Figure 6 -3 : Base case vs ASH, number of bumps 
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BASE CASE ASH

 Average Bumprate Average Number  
of Bumps SD 

Base Case 3.98% 85.07 28.44 
ASH 2.37% 65.47 24.06 

Change -20.47% -23.04% -15.42% 
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The statistical significance of the reduction in the number of bumps was tested using a 

two-sample t-test assuming equal variances, the p-value of 0% (reported in Table 6-7) 

confirms that the ASH is able to reduce the occurrence of bumping.  

 
Paired sample T-test t df p 
Base Case & ASH 132.46 999 0.00 

Table 6 -7 : T-test heuristic improvement 
 
The effectiveness of the ASH can be observed in more detail by comparing it to the base 

case while looking at an exemplary simulation run. Comparability is ensured by fixing the 

same seed of both the base case and the ASH run, thus the ICU faced identical unplanned 

patient arrivals and LOS characteristics over the course of the simulation run. To ensure 

valid average measurements of this particular scenario it was run for 10 years and thus 

includes 520 unique weeks. The randomly chosen seed resulted in a scenario with 2,737.4 

yearly patients, of which 93.3 (3.41%) were bumped in the base case and 77 (2.81%) were 

bumped after applying the ASH, a bumping reduction of 17.59% in this particular scenario 

(average values per year). Figure 6-4 summarizes the effect of the ASH on the average 

weekly patient arrival rate, average weekly ICU occupancy and the number of bumps 

visually. All metrics are indicated per week per shift. The arrival rates are nearly identical, 

the only difference being that the total number of surgeries scheduled in the base case and 

by the ASH differs on Tuesdays and Fridays (4 vs 3 and 3 vs 4). Contrasting the trajectory 

of the two occupancy lines demonstrates the effect of the ASH heuristic. By moving 

planned patients according to their Loadfactor an evener distribution of patient load is 

achieved. Peak loads on Wednesdays and Fridays are reduced and days with lower 

capacity usage (Mondays & the weekend) are better utilized. Inspecting the number of 

weekly bumps per shift (the bars refer to the left axis) proves that by balancing occupancy 

across the week the occurrences of the ICU reaching its capacity limit can be reduced and 
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the Bumprate is reduced as a consequence. The most significant reductions were achieved 

on Thursdays and Fridays, while Mondays, for example, saw an increase of Bumps. 

 

Figure 6 -4 : Single run comparison, base case & ASH 
 

The ability and effectiveness of the ASH to improve capacity management at the ICU and 

to reduce the number of premature patient discharges is confirmed by the results of the 

simulation. These findings will form the core of the recommendations for the ICU’s 

management team discussed in the next chapter. 
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7. CONCLUSION & RECOMMENDATIONS 

 Research Conclusion 

 

This research project successfully developed a capacity management scheme that allows 

the ICU at the Erasmus MC to reduce the occurrences of premature discharge by 

calibrating the planned patient load to match the patterns of unplanned patient arrivals 

& LOS. It required a multi-step process that began by surveying the academic literature 

of previous ICU studies.  

The survey first focussed on the methods used, finding that while queuing and simulation 

are most commonly used, the uncommon combination of optimization and discrete event 

simulation is the best fit for this study, for the reason that it brings solution finding 

together with a testing environment that is able to reflect the uncertain characteristics of 

the ICU environment. In terms of heuristics that improve how the ICU deals with its 

uncertain environment, the review found that most studies aim to reduce negative 

consequences in form of surgery cancellation or patient refusals, while the bumping 

consequence at the centre of this study has seen less attention. Most ICU studies were set 

in an environment in which capacity could still be influenced, a parameter that could not 

be changed in this study and thus required the development of an entirely new heuristic. 

The uncertainty an ICU faces is the defining characteristic of the operational challenges 

of the ICU. How to capture and account for the variability of arrival rates and LOS was 

studied, finding that avoiding categorical averages by using a time-varying Poisson arrival 

process combined with right-tailed distribution fitting for patient LOS was best suited. 

The estimation of these variables needed to be based on a coherent patient classification 

that segregates patients that exhibit differing arrival and LOS characteristics. By adopting 
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the diagnosis categories of the Erasmus MC as patient type classification the 

interpretability of the study results is greatly improved while also achieving the necessary 

reduction of within-group variability. 

Underpinning the heuristic development was a thorough statistical analysis and discussion 

of the ICU’s historical data, which also provided the basis for the modelling of the 

previously unobserved arrival and LOS characteristics of each patient. Apart from 

providing the management of the ICU with a better understanding of these factors, it also 

revealed the improvement possibility of rescheduling elective surgeries on which the ASH 

heuristic is based. By combining arrival frequency and survivor functions expected patient 

capacity usage was quantified. This parameter successfully accounts for the capacity usage 

“lag” across various days caused by the probability of extended patient LOS. A regular 

weekly elective surgery schedule was defined by studying planned patient arrivals and 

aggregating them into five larger groups according to their LOS characteristics. With these 

two definitions in place, the expected patient load was allocated across the week using a 

squared-sum integer optimization programme that evenly balanced the planned patient 

load with the unplanned patient load.  

The ASH heuristic was then tested by mirroring the ICU environment in a discrete event 

simulation, which proved that the ASH successfully reduces the number of premature 

dismissals at the ICU by reducing the number of times the ICU reaches its capacity limit. 

While the ASH developed here is specific to the ICU of the Erasmus MC, the underlying 

methodology developed and explained in this research can be replicated at any ICU that 

receives a mix of unplanned and planned patients.  
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 Recommendations to the Erasmus MC 

 
Presented with the question of how to improve the capacity management at the new 

combined ICU unit, this research arrived at a newly developed heuristic that achieves a 

reduction in patient bumping. The ASH defines a weekly schedule that ideally balances 

planned and unplanned patient arrivals considering their arrival rates and LOS. The 

schedule is summarized in Table 7-1. The main recommendation that follows is to suggest 

the resulting allocation of elective surgeries to the surgery planning team and determine 

if an implementation is feasible for both sides. Barring any scheduling conflicts from the 

surgery planners, implementing this schedule is relatively straightforward. The amount of 

surgeries scheduled reflects the most common elective surgery load the ICU receives per 

week and the merged groups introduce some flexibility into which surgery exactly can be 

scheduled on each day. Implementation of the ASH will not only reduce the occurrence of 

premature dismissals, but the even patient load across the week also carries other benefits, 

such as the possibility to schedule staff more evenly.  

 
Weekday Elective surgery kind Amount 

Monday CABG, Klep, Thoracotomie 5 

Tuesday 
CABG, Klep, Thoracotomie 1 

Congenital, Overige TH 2 
Wednesday CABG, Klep, Thoracotomie 3 
Thursday TAVI, Aorta 5 

Friday 
HTX, LOTX, LVAD 1 

Cardiology, Re-Thoracotomie 2 
TAVI, Aorta 1 

Table 7 -1: Detailed surgery schedule 
 
Beyond the actionable recommendation of implementing the ASH, this research results in 

a range of other findings relevant to how the ICU at the Erasmus MC operates. First of 

all, it informs about the trends and characteristics of patient arrivals and LOS. This 

information can be used to revise assumptions about these factors at the ICU. The ICU 
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management should continue to collect data to keep this information up to date and keep 

observing its development. Data collection at the ICU, in general, should be expanded and 

include records on ad-hoc decisions, such as patient bumping. This will allow additional 

future research into the dynamics of capacity management at the ICU.  

The statistical analysis of this research uncovered a disproportionate capacity usage by 

Hartfalen & OHCA patients, which tend to stay in the ICU for long periods of time. The 

ICU’s management should consider if the medical care requirements of these patients allow 

for a shortening of their stay at the ICU or if it is possible to expand the regional 

collaboration with Maasstad hospital to further share the patient load of these types. 

These efforts would make more ICU capacity available.  

Another important finding was highlighting the seasonal nature of patient arrivals on a 

weekly and hourly basis, insights that should be considered when creating the nurse 

schedule of the ICU. 

Lastly, the ICU should introduce LOS estimation at admission using medical judgement 

of the patient’s condition and record it. The resulting discharge date estimate would 

improve short-term planning and could be integrated into a variation of the ASH that 

expands its way of working to include an adaptive element based on the current state of 

the ICU. 

 
 Limitations 

 
The main limitation of this research is that its analysis is focussed on a single entity, the 

Erasmus MC, which is also the sole source of data. While this infers that the final 

recommended patient schedule is specific to this ICU, the approach used here is suited to 

study other hospital wards as well. Furthermore, the concept and methodology behind the 

proposed ASH, that defines patient load as the combination of arrival and stay probability, 
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can be replicated to describe the expected capacity usage and improve on it in other 

hospital units as well. 

Another limitation of this study is the fact that it describes a new environment (the ICU 

after the move), characterised by a new patient mix, based on historical data of two 

separate units. Capacity usage and the premature discharges resulting from reaching the 

capacity limit at the new unit had to be approximated. This limitation was countered by 

mirroring the observed dynamics of the ICU very closely and validating the individual 

estimations used by the simulation individually with historical data. The successful 

validation gives confidence in the resulting parameters. 

A third limitation relates to the LOS estimation as well as the usage of survival functions 

as part of the average Loadfactor estimation. Both rely on probability distributions and 

share the common fallacy that they are based only on the data observed so far. In reality, 

the ICU might receive a patient of any type who’s stay exceeds the highest LOS observed 

for this type so far and thus extends the survival function at any point in time. This 

limitation is more relevant for small patient types that have little historical data. Another 

limitation is the possibility that the described Poisson arrival rates and LOS distributions 

are overfitted, reducing the ability to generalise the resulting findings. This was countered 

by using the maximum amount of data available to estimate all parameters. Aggregating 

the underlying measures over the four years enables the estimation to pick up the signal 

within the data more easily. 

 
 

 Recommendations for Future Research 

 

The ASH developed in this study is a novel heuristic that is able to improve capacity 

management in a fixed capacity environment in its current form. Nevertheless, there is a 

clear opportunity to iterate and improve on the ASH. In its current form, it takes on a 
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deterministic form to arrive at a solution that provides a balanced patient load most of 

the times. Two improvements present themselves for future research. The first being an 

expansion of the heuristic to incorporate the ICU’s current state and transforming it into 

a short-term state-dependent arrival smoothing heuristic. The most relevant predictor of 

future ICU capacity is its current state, which was not observable in this study. Another 

beneficial adaptation would be to make the elective surgery component that’s being 

allocated adaptively by allowing for changing daily limits or changing numbers of required 

surgeries. These two improvements could also be combined to form a more flexible and 

even more powerful heuristic that is able to balance patient load with even higher 

precision, especially useful for short-term decision making.  

An additional evolution of the ASH that could be a topic for future research would be to 

combine it with an elective surgery scheduling problem that aims to build an effective 

surgery schedule while keeping ICU capacity in mind. While examining this, planned 

patient allocation could be considered on a shift- or hourly level. Drilling this far down 

could bring improved performance by considering hourly differences in patient levels, 

which do exist as shown in this research. 

Great potential lies in further exploring the estimation of LOS as well. Joint research of 

medical professionals and operations researchers that combines medical expertise with 

prediction model building would be a valuable addition to the available literature and 

surely contribute to improve heuristics such as the one presented in this study as well as 

find direct application in practice. 

 
 Next Steps in Collaboration with the Erasmus MC 

 
The research commenced here and the collaboration with the Erasmus MC will continue 

after the submission of this thesis as part of my double degree programme. My MSc in 

Supply Chain Management, of which this thesis is the final component, will be 
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complemented by the MSc in Business Analytics at the ESADE Business School. The 

double degree programme entails the creation of a combined thesis, this being the first 

part. As part of my second degree, I will iterate on this project together with the Erasmus 

MC with the aim to both expand and implement the findings in a more practical way. 

Additional data collection, that includes more detail of ad-hoc events such as bumping 

occurrences and staffing changes, was agreed on with the Erasmus MC. The ICU 

management plans to integrate discharge estimates into its workflow, thus the project 

iteration will aim to add a state-dependent ASH implementation as well as explore how 

LOS estimation, done by medical professionals, can be integrated. The aim of both parts 

combined is to facilitate integrating a refined ASH policy into the Erasmus MC’s patient 

management system. 
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APPENDIX A. PATIENT TYPES 

 
Patient Type Diagnosis 

STEMI 
ST-Elevation Myocardial Infarction: a heart attack that is characterized by 
the blockage of one of the heart’s major arteries and requires immediate 
attention 

NSTEMI A Non-STEMI heart attack that may or may not require immediate 
attention 

OHCA Out of Hospital Cardiac Arrest: the loss of heart function, caused by sudden 
irregularities of the heart’s rhythm, requires immediate attention 

ECMO Extra Corporeal Membrane Oxygenation: a life support procedure in which 
the functions of the heart and lung are performed by a machine 

Ritmestoornissen Heart arrhythmia that requires cardiological treatments 

Hartfalen Heart failure 

Pericarditis An infection of the pericardium (the tissue around the heart) 

Endocarditis An infection of the inner heart valves 

Tamponade The accumulation of fluid between the pericardium (the tissue around the 
heart) and the heart, which can restrict the ability of the heart to function 

Overige An umbrella term to cover a variety of other cardiology diseases 
Table A-1: Description of unplanned patient types 
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Patient Type Diagnosis 

CABG Coronary Artery Bypass Graft: commonly known as “bypass” surgery, it 
restores blood flow by bypassing a coronary artery blockage 

Aorta Surgery of the Aorta (the body’s main artery), often necessary to treat 
aneurysms, abnormalities of blood vessels  

TAVI Transcatheter Aortic Valve Implantation: a newly developed procedure to 
replace aortic valves that show signs of failure 

EFO Electrophysiology: a procedure to examine and determine the treatment of 
abnormal heart rhythms 

Klep Open heart surgery to treat heart valve irregularities 

Cardiology An umbrella term covering surgeries that need cardiology care afterwards 

Congenital Surgical treatment of heart conditions/defects existing since birth 

Overige TH An umbrella term to cover a variety of other thorax surgeries 

Kinderhart CH Children heart surgery 

Long CH Lung surgery 

Thoracotomie 
/Re-
Thoracotomie 

A procedure to open the chest to access the lungs - often used for lung cancer 
patients. Re-Thoracotomie refers to a repetition of the same surgery 

HTX / LOTX Heart / Lung transplant surgery 

LVAD Left Ventricular Assist Device: a surgery that implants a mechanical, battery-
powered blood pump, necessary for patients with advanced heart failures  

Table A-2: Description of planned patient types 
  



 78 

APPENDIX B. PATIENT TYPE CLASSIFICATION 

The patient type matching process: 

1. The ICU dataset is split per unit (ICCU & ICTH) 
2. The “diagnosis” (ICCU) and “operations”(ICTH) fields are converted to all caps 
3. ICTH only: split patient population by age (Children < 18 years < Rest), all 

children are allocated the patient type “Kinderhartchirurgie” 
4. Import the ICCU/ICTH patient type keyword allocation (In its initial state it 

only included the name of each patient type) 
5. A nested IF function checks the “diagnosis” or “operations” fields for the presence 

of each keyword on the list 
6. All positive matches are listed in a new column “TypeMatch” 
7. An IF function checks if the entries have been matched, the dataset is split into 

“Matched” and “No Match”, all “No Match” entries enter a separate keyword 
generation workflow, explained below 

8. ICTH only: the “Matched” entries are joined with the “Kinderhartchirurgie”-set 
separated earlier 

9. The “TypeMatch” column may include more than one match, possibly duplicates, 
it is thus required to find the best fitting match. This was already considered 
during the keyword list generation. Since the software checks for keywords from 
top to bottom the less specific “catch-all” category “Overige” was placed at the 
very end, since it is expected that many patients will match its keywords. 
Furthermore, NSTEMI is a different kind of STEMI patient that needs to be 
considered separately. Since all NSTEMI’s will match to the keyword “STEMI”, 
but not the other way around, NSTEMI was listed before STEMI in the keyword 
list. It was found that patient entries had up to three matches, the first step is 
splitting these into separate columns, using “space” as a delimiter 

10. A new column “FinalMatch” is created, if a patient had only one match, it takes 
on that value 

11. An IF function checks if the multiple matches are duplicates. If yes, it takes on 
the first match, if not, it checks if either match is “Overige”, if yes it takes on the 
first match, if not it needs to be inspected 

12. Finally, the ICCU and ICTH datasets are merged again and the final matched 
dataset is exported 
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Keyword generation process, using unmatched patient entries: 
 
1. For all patients that were not matched the “diagnosis” or “operations” fields are 

grouped to aggregate patients in case there is identical “diagnosis” or 
“operations” information, the occurrence of each grouped “diagnosis” or 
“operations” information is counted 

2. The grouped “diagnosis” or “operations” information that appeared more than 50 
times (representing common diagnoses that are easy to allocate right away) in the 
data is separated, the resulting list of “diagnosis” or “operations” information is 
provided to the ICU management which extracts keywords and allocates these to 
patient types 

3. The grouped “diagnosis” or “operations” information that appeared less than 50 
times represents a large part of data that cannot easily be summarized. To derive 
a manageable list of keywords from this information it goes through a “fuzzy 
match” process, which works as follows: 

i. Punctuation and conjunctions (such as “&”, “of”, “the”) and single letter 
words are stripped from all fields, empty fields are ignored 

ii. Common Dutch words that have no relevance are stripped (e.g. “na”, 
“bij”, “rechts”, “nieuwe”, “het”,…) this also includes medical terms that are 
not relevant or too general for the patient type classification (e.g. Fever: 
“Koorts”, “Shock”, lung-related: “pulmonale”,…) 

iii. All remaining words in each field are used as Alphanumeric Keywords 
(MatchKeys) and matched with each other using a threshold of 80% (this 
accounts for differences in spelling or abbreviations) 

iv. The MatchKeys and Match Score is generated for all entries 
4. The dataset is grouped by the generated MatchKeys, the occurrence of each Key 

is counted 
5. All keys that occurred more than 10 times are compiled, provided to the ICU 

management which extracts keywords and allocates these to patient types 
6. The two returned lists of keywords are used to update the ICCU/ICTH patient 

type keyword allocation as well as the list of words of no relevance 
7. The main workflow is run again 
8. The keyword generation process is repeated until all patients have been matched 
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Figure B-1 : Patient classification workflow in the Alteryx software 
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APPENDIX C. ARRIVAL RATES 

 
Figure C-1 : Unplanned patient arrival rates
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APPENDIX D. LENGTH OF STAY 

 

 
 

Figure D-1: LOS Histograms per patient type 
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Figure D-2: Histograms with fitted distributions 
  

ECMO Endocarditis Hartfalen NSTEMI 

OHCA Overige Pericarditis Ritmestoornissen 

STEMI Tamponade TAVI Aorta 

Cardiology CABG Congenital 

Klep 

HTX 

LOTX LVAD Overige TH 

Rethoracotomie Thoracotomie 



 84 

 

 

 

 

 

Figure D-3: Survivor functions 
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Table D-1: Planned patient group probabilities of staying 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table D-2: Unplanned patient probabilities of staying 
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0  100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 
1 12.14% 84.03% 20.35% 10.47% 26.65% 39.51% 67.50% 30.23% 65.38% 94.12% 
2  4.63% 74.33% 5.52% 4.19% 9.30% 18.54% 47.50% 16.28% 47.00% 88.24% 
3  1.20% 60.08% 0.90% 0.58% 0.72% 9.27% 32.50% 10.08% 33.08% 73.53% 
4  0.00% 42.97% 0.00% 0.00% 0.00% 5.37% 16.25% 7.75% 23.98% 67.65% 
5  - 30.61% - - - 1.46% 11.25% 4.65% 18.57% 63.73% 
6  - 21.86% - - - 0.00% 8.75% 0.00% 13.93% 60.78% 
7  - 15.21% - - - - 3.75% - 9.86% 52.94% 
8  - 11.03% - - - - 0.00% - 7.93% 49.41% 
9  - 6.84% - - - - - - 6.00% 41.18% 
10  - 5.13% - - - - - - 4.26% 27.94% 
11 - 1.90% - - - - - - 2.51% 23.53% 
12  - 0.76% - - - - - - 1.55% 22.06% 
13  - 0.00% - - - - - - 0.77% 20.59% 
14  - - - - - - - - 0.00% 19.12% 
15  - - - - - - - - - 17.65% 
16  - - - - - - - - - 11.76% 
17  - - - - - - - - - 8.24% 
18  - - - - - - - - - 0.00% 

Days Group 1 Group 2  Group 3  Group 4  Group 5  
0  100.00% 100.00% 100.00% 100.00% 100.00% 
1 92.91% 34.54% 30.82% 17.37% 12.19% 
2  82.68% 18.94% 10.56% 3.14% 2.50% 
3  62.20% 11.42% 5.96% 0.17% 0.31% 
4  46.46% 8.64% 2.46% 0.08% 0.00% 
5  29.13% 3.90% 0.64% 0.00% - 
6  19.69% 3.62% 0.00% - - 
7  12.60% 1.11% - - - 
8  8.66% 0.84% - - - 
9  7.87% 0.00% - - - 
10  7.20% - - - - 
11 6.52% - - - - 
12  5.51% - - - - 
13  3.15% - - - - 
14  0.00% - - - - 
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APPENDIX E. SIMULATION 

 

Figure E-1: Simulation routing logic 
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Figure E-2: Statistical backbone of the simulation 
 

 

Figure E-3: Main dashboard of the simulation 
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