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Abstract

We model a financial market where privately informed investors trade in a

limit order book monitored by low-latency liquidity providers. Price competi-

tion between informed limit order submitters and low-latency market makers

allows us to capture tradeoffs between informed limit and market orders in a

methodologically simple way. We apply our model to study maker-taker fees —

a prevalent, but controversial exchange fee system that pays a maker rebate for

liquidity provision and levies a taker fee for liquidity removal. When maker-taker

fees are passed through to all traders, only the total exchange fee per transaction

has an economic impact, consistent with previous literature. However, when in-

vestors pay only the average exchange fee through a flat fee per transaction—as is

common practice in the industry—maker-taker fees have an impact beyond that

of a change in the total fee. An increase in the maker rebate lowers trading costs,

increases trading volume, improves welfare, but decreases market participation

by investors.
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Equity trading around the world is highly automated. Exchanges maintain limit

order books, where orders to trade pre-specified quantities at pre-specified prices are

arranged in a queue, according to a set of priority rules.1 A trade occurs when an

arriving trader finds the terms of limit orders at the top of the queue sufficiently

attractive and posts a marketable order that executes against these posted limit orders.

To improve the trading terms, or liquidity, offered in their limit order books, many

exchanges incentivize traders who provide, or “make” liquidity. Trading venues pay a

rebate to submitters of executed limit orders, and they finance these rebates by levying

higher fees to remove, or “take” liquidity on submitters of marketable orders. This

practice is referred to as “maker-taker” pricing.2 Moreover, with the rise of algorithmic

trading, exchanges have adopted technology that offers extremely high-speed, or “low-

latency” market data transmission, in order to appeal to speed-sensitive participants.

The rebates, along with the increased speed of trading systems, has given rise to “a new

type of professional liquidity provider”: proprietary trading firms that “take advantage

of low-latency systems” and provide liquidity electronically.3

The role of maker-taker pricing and the new low-latency computerized traders re-

mains controversial. Proponents maintain that the new trading environment benefits

all market participants through increased competition. Opponents argue that the in-

creased competition for liquidity provision makes it difficult for long-term investors to

trade via limit orders and that it compels them to trade with more expensive mar-

ketable orders.4

To study the impact of the recent market structure developments, we must first un-

1Most exchanges sort limit orders first by price, and then by the time of arrival, maintaining a
so-called price-time priority.

2IOSCO Consultation Report, International Organization of Securities Commissions (2011),
page 19.

3SEC Concept Release on Market Structure, Securities and Exchange Commission (2010).
4See, e.g., GETCO’s comments on maker-taker fees in options markets to SEC (available at

http://www.getcollc.com/images/uploads/getco_comment_090208.pdf), in favor, and TD Se-
curities’ comments on IIROC 11-0225 (www.iiroc.ca), Alpha Trading Systems’ September 2010
Newsletter (http://www.alphatradingsystems.ca/, against.
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derstand tradeoffs between market and limit orders in current markets, namely, in limit

order books where low-latency traders act as de facto market makers. It is particularly

important to understand these tradeoffs in presence of private information — when

some traders have a speed advantage, others arguably need an informational advan-

tage to compete. Existing models typically either study markets where all available

liquidity is provided by competitive market makers or assume that all traders strategi-

cally choose between supplying and demanding liquidity and that they have temporal

market power in liquidity provision.5 Analyzing a trader’s choice between market

and limit orders is methodologically challenging. When liquidity providers have mar-

ket power, a limit order submitter must optimally choose the limit order price, while

accounting for the impact of the price choice on the probability of the limit order execu-

tion. The resulting dynamic optimization problem is especially difficult with informed

liquidity provision, as the limit order price may reveal the liquidity provider’s private

information.

In this paper, we build on Kaniel and Liu (2006) and provide a model of a limit

order book where privately informed traders (who we refer to as “investors”) trade with

market and limit orders, and, when submitting a limit order, compete with uninformed

low-latency market makers. Price competition in liquidity provision between informed

and uninformed (but fast) traders is a key methodological insight in our paper — it

allows us to circumvent the complexity of the optimization problem, because all limit

orders are posted at prices that yield zero-profits to low-latency liquidity providers.

Our setup captures the low-latency liquidity providers’ speed advantage in inter-

preting market data, such as trades and quotes. In practice, the speed advantage comes

at a cost and low-latency liquidity providers are arguably at a disadvantage (relative to

5See, e.g., Glosten and Milgrom (1985), Kyle (1985), Easley and O’Hara (1987), or Glosten (1994)
for competitive market maker models; Parlour (1998), Foucault (1999), Foucault, Kadan, and Kandel
(2005), Goettler, Parlour, and Rajan (2005), Rosu (2009), Back and Baruch (2013), Baruch and
Glosten (2012) for limit order books with uninformed liquidity provision, and Kaniel and Liu (2006),
Goettler, Parlour, and Rajan (2009), and Rosu (2011), for informed liquidity provision. See also the
survey by Parlour and Seppi (2008) for further discussion.
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humans or sophisticated algorithms) when processing more complex information, such

as news reports. We capture this difference in information processing skills by allowing

investors an informational advantage with respect to the security’s fundamental value.

Additionally, investors have private valuations (e.g., liquidity needs) for the security.6

In equilibrium, an investor’s behavior is governed by his aggregate valuation, which

is the sum of his private valuation of the security and his expected value of the security.

Investors with extreme aggregate valuations optimally choose to submit market orders,

investors with moderate valuations submit limit orders, and investors with aggregate

valuations close to the public expectation of the security’s value abstain from trading.

Changes in exogenous market factors (e.g., a trading platform’s fee structure) lead

to changes in the marginal aggregate valuations that investors require to submit market

or limit orders, and to changes in liquidity, trading volume, and market participation

by investors. We apply our model to study the impact one such change: the use of

maker-taker pricing.

Consistent with the previous literature (see Angel, Harris, and Spatt (2011) and

Colliard and Foucault (2012)), when maker-taker fees are passed through, the split

does not play an economically meaningful role in our model, because any increase in

the maker rebate is passed to the takers through a narrower bid-ask spread, exactly

offsetting an increase in the taker fee.7 As a practical matter, however, many long-

term investors do not pay taker fees directly and do not receive maker rebates but

instead pay a flat fee per trade to their broker, while low-latency traders incur per-

trade exchange fees and rebates. We investigate this variant on maker-taker pricing by

applying our model to a setting where we assume that investors pay only the average

maker-taker fee.

6Assuming that traders have liquidity needs is common practice in the literature on trading with
asymmetric information, to avoid the no-trade result of Milgrom and Stokey (1982); modelling these
needs as private valuations allows use to derive welfare implications.

7When discussing our results, we focus on the prevalent industry practice of a negative maker fee,
or a rebate, but our analysis extends to the case of a positive maker fee.
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Ceteris paribus, an increase in a maker rebate lowers the bid-ask spread and induces

investors previously indifferent to market and limit orders to trade with market orders

(since an investor’s trading costs consists, loosely, of the bid-ask spread and the flat

fee levied by their broker). Consequently, the probability of a market order submission

increases, and so does the trading volume. This would lead to brokers paying taker

fees more frequently and consequently charging investors a higher flat fee.

We support this intuition numerically and find further that the increase in the flat

fee is more than offset by the decline in the bid-ask spread. For a fixed total exchange

fee, investors’ overall trading costs thus decline with an increase in the maker rebate.

The marginal submitter of a market order then requires weaker information, and the

price impact of a trade declines.

To analyze the impact of maker-taker fees on welfare, we follow Bessembinder, Hao,

and Lemmon (2012) and define a social welfare measure to reflect allocative efficiency.

Specifically, with each trade, the social gains from trade increase by the difference

between the buyer’s and the seller’s private valuations, net of differences in trading

fees, and we define the social welfare to be the expected social gains per period. We

find numerically that, for a fixed total exchange fee, the welfare increases in the maker

rebate, provided the maker rebate is not too large.8

This change is driven by investors switching from submitting limit orders to trading

with market orders, increasing the probability that gains from trade are realized. Limit

order provision by investors is inefficient for two reasons. First, an investor who submits

a limit order risks non-execution of his own order. Second, this investor possibly

imposes a negative externality on the previous period investor — if the earlier investor

submitted a limit order on the opposite side, then that order does not execute. In the

presence of low-latency liquidity providers who collect (some of) the maker rebates,

8When the maker rebate is sufficiently large, the spread becomes sufficiently small, and, in equi-
librium, investors choose to trade exclusively with market orders. Any further increase in the maker
rebate that is financed by an increase in the taker fee leads to a decline in the quoted spreads, but
yields no further economically meaningful implications.
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the flat fee levied on investors acts as a tax on limit orders and as a subsidy on market

orders; it thus mitigates the negative externality.

Our paper is most closely related to Colliard and Foucault (2012) and Foucault,

Kadan, and Kandel (2012), who theoretically analyze the impact of maker-taker fees.

Colliard and Foucault (2012) study trader behavior in a model where symmetrically

informed traders choose between limit and market orders. They show that, absent

frictions, the split between maker and taker fees has no economic impact, and they

focus on the impact of the total fee charged by an exchange. Foucault, Kadan, and

Kandel (2012) argue that in the presence of a minimum tick size, limit order book prices

may not adjust sufficiently to compensate traders for changes in the split between maker

and taker fees. They then show that exchanges may use maker-taker pricing to balance

supply and demand of liquidity, when traders exogenously act as makers or takers.

Skjeltorp, Sojli, and Tham (2012) support theoretical predictions of Foucault, Kadan,

and Kandel (2012) empirically, using exogenous changes in maker-taker fee structure

and a technological shock for liquidity takers. Rosu (2009) finds that the prediction of

Colliard and Foucault (2012) on the neutrality of the breakdown of the total fees holds

in presence of asymmetric information. Our predictions on spreads, price impact, and

volume, and the prediction of Colliard and Foucault (2012) are supported empirically

by Malinova and Park (2011), who study the impact of the introduction of maker

rebates on the Toronto Stock Exchange.

Our work is also closely linked to Degryse, Achter, and Wuyts (2012), who study

the impact of the post-trade clearing and settlement fees. In their model, the clearing

house may set a flat fee for all trades or impose different fees, depending on whether a

trade was internalized. They find that the fee structure affects the welfare of market

participants, and that the optimal structure depends on the size of the clearing fee.

The maker-taker pricing model is related to the payment for order flow model,

see, e.g., Kandel and Marx (1999), Battalio and Holden (2001), or Parlour and Rajan
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(2003), in the sense that both systems aim to incentivize order flow; Battalio, Shkilko,

and Van Ness (2012) and Anand, McCormick, and Serban (2013) empirically compare

market quality under the maker-taker pricing with that under the payment for order

flow model.

Our analysis of a limit order market with competitive informed liquidity provision to

the broader theoretical literature on specialist and limit order markets, see, e.g., Glosten

and Milgrom (1985), Kyle (1985), Easley and O’Hara (1987), and Glosten (1994), for

competitive uninformed liquidity provision; Parlour (1998), Foucault (1999), Foucault,

Kadan, and Kandel (2005), Goettler, Parlour, and Rajan (2005), Rosu (2009), Back

and Baruch (2013), and Baruch and Glosten (2012) for limit order books with strategic

uninformed liquidity provision; Kaniel and Liu (2006), Goettler, Parlour, and Rajan

(2009), and Rosu (2011), for strategic informed liquidity provision.9 The pricing rule

model is very closely related to the equilibrium pricing rule in Kaniel and Liu (2006);

differently to them, all traders in our model behave strategically. We complement

the theoretical literature that focuses on the trading strategies of low-latency traders,

see e.g., Biais, Foucault, and Moinas (2012), Foucault, Hombert, and Rosu (2012),

Hoffmann (2012), and McInish and Upson (2012).

Finally, the role of low-latency traders as competitive liquidity providers is sup-

ported empirically by, e.g., Hasbrouck and Saar (2011), Hendershott, Jones, and

Menkveld (2011), Hendershott and Riordan (2012), and Jovanovic andMenkveld (2011).

1 The Model

We model a financial market where risk-neutral investors enter the market sequentially

to trade a single risky security for informational and liquidity reasons (as in Glosten and

Milgrom (1985)). Trading is conducted via limit order book. Investors choose between

posting a limit order to trade at pre-specified prices and submitting a market order to

9See also the survey by Parlour and Seppi (2008) for further related papers.
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trade immediately with a previously posted limit order. Additionally, we assume the

presence of low-latency liquidity providers, who choose to act as market makers, and

to only submit limit orders. These traders possess a speed advantage that allows them

to react to changes in the limit order book faster than other market participants. We

assume that they are uninformed and that they have no liquidity needs. Low-latency

liquidity providers compete in the sense of Bertrand competition, are continuously

present in the market, and ensure that the limit order book is always full.

Security. There is a single risky security with an unknown liquidation value. This

value follows a random walk, and at each period t experiences an innovation δt. The

fundamental value in period t is given by

Vt =
∑

τ≤t

δτ (1)

Innovations δt are identically and independently distributed, according to density func-

tion ḡ on [−1, 1], which is symmetric around zero. We focus on intraday trading, and

we assume that extreme innovations to the security’s fundamental value are less likely

than innovations that are close to 0 (i.e., that ḡ′(·) ≤ 0 on [0, 1]).10

Investors. There is a continuum of risk-neutral investors. At each period t, a

single investor randomly arrives at the market. Upon entering the market, the investor

is endowed with liquidity needs, which we quantify by assigning the investor a private

value for the security, denoted by yt, uniformly distributed on [−1, 1]. Furthermore,

the investor learns the period t innovation to the fundamental value, δt.
11

Investor Actions. An investor can submit an order upon arrival and only then.

He can buy or sell a single unit (round lot) of the risky security, or abstain from

10For the existence of the competitive equilibrium, we additionally require that the mean of G is not
too large. At the time of writing, we do not have a closed-form condition on the primitives; we provide
further details in the Theorem 1 and in the discussion of out-of-equilibrium beliefs in Appendix A.

11Assuming that traders have liquidity needs is common practice in the literature on trading with
asymmetric information, to avoid the no-trade result of Milgrom and Stokey (1982). We also solved for
an equilibrium, assuming that only a fraction of traders become informed, with qualitatively similar
results.
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trading.12 If the investor chooses to buy, he either submits a market order and trades

with an existing order at the previously posted ask price askt in period t, or he posts

a limit buy order at the bid price bidt+1 in period t, for execution in period t + 1.

Similarly for the decision to sell. Limit orders that are submitted in period t and that

do not execute in period t+1 are automatically cancelled. An investor may submit at

most one order, and upon the order’s execution or cancellation the investor leaves the

market forever.

Low-Latency Liquidity Providers. There is continuum of low-latency liquidity

providers who are always present in the market. They hold a speed advantage in

reacting to changes in the limit order book. These traders act as market makers and

post limit orders in response to changes in the limit order book. They compete in prices

in the sense of Bertrand competition. Low-latency liquidity providers are risk-neutral,

they do not receive any information about the security’s fundamental value, and they

do not have liquidity needs.

The Limit Order Book. Trading is organized via limit order book, which is

comprised of limit orders. Limit orders last for one period. Arguably, this simplify-

ing assumption is particularly realistic in presence of low-latency traders, as slower

investors may fear that their orders become stale and will be “picked off” by the low-

latency traders. Low-latency liquidity providers ensure that the limit order book is

always “full” by submitting a limit order when there is no standing limit order on the

buy or the sell side. The limit order book thus always contains one buy limit order and

one sell limit order, upon arrival of an investor in period t. A trade occurs in period t

when the investor that arrives in period t chooses to submit a market order.

Exchange Fees. The limit order book is maintained by an exchange that charges

time-invariant fees for executing orders. The focus of this paper is on maker-taker

fees, which depend on the order type (market or limit), but do not depend on whether

12We will refer to investors in the male form, and we will refer to the low-latency liquidity providers
in the female form.
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an order is a “buy” or a “sell”. To simplify the exposition, we assume that the total

exchange fee per transaction is 0 and focus on the split of this fee into a taker fee,

which we denote by f and a maker rebate (= f).13 For most of our discussion, we

focus on the prevalent practice where the taker fee is positive. The intuition for our

results extends for the reverse scenario where market order submitters receive a rebate

and submitters of executed limit orders pay a positive fee.14

Low-latency liquidity providers receive maker rebates for executed limit orders. We

study two settings. In the first, investors pay the taker fees and maker rebates on a

trade-by-trade basis. In the second, “flat-fee” setting, investors only pay the average

maker-taker fee, through a flat fee per transaction. Our “flat-fee” setting reflects a

common practice in the industry: long-term investors typically access exchanges via

brokers, who pay the exchange maker-taker fees but levy a flat fee per transaction on

their customers.15

Public Information. Investors and low-latency liquidity providers observe the

history of transactions as well as limit order submissions and cancellations. We denote

the history of trades and quotes up to (but not including) period t by Ht. The structure

of the model is common knowledge among all market participants, but an investor’s

liquidity needs and his knowledge of an innovation to the fundamental value are private.

Low-Latency Liquidity Provider Information. Low-latency liquidity providers

are able to detect whether a newly posted limit order stems from an investor with liq-

uidity and informational needs or from other low-latency liquidity providers. This

assumption ensures that the model is tractable. We believe that it is consistent with

reality, because low-latency traders are allegedly good at identifying, for instance, larger

institutional orders. Further, within our model, low-latency liquidity providers react

virtually instantaneously to changes in the limit order book, whereas investors who

13Colliard and Foucault (2012) study the impact of a total exchange fee.
14This “inverted” pricing is often referred to by industry participants as “taker-maker pricing”, as

it is utilized, for instance, by NASDAQ OMX BX.
15See, e.g., the Interactive Brokers fees: http://www.interactivebrokers.com/en/p.php?f=commission
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trade for liquidity and informational reasons arrive at discrete time intervals — con-

sequently, limit orders that are posted by low-latency liquidity providers are identified

by the reaction time. Finally, from a technical perspective, this assumption is equiva-

lent to assuming presence of a single low-latency liquidity provider who chooses to act

competitively.

Timing of Actions. We model intraday trading. Periods are measured in discrete

units (which we denote by t) with no specific beginning or end. Each period marks

the arrival of an investor. At the beginning of any period t, the limit order book is

full in the sense that it contains one buy limit order and one sell limit order. In each

period t, an investor enters the market, observes the transaction and quote history Ht,

his liquidity needs measured by his private valuation yt, and the innovation δt to the

security’s value. This investor posts a limit or a market order, or abstains from trading.

When a market order is posted, it executes against a limit order that was posted

in period t − 1, and the investor leaves the market forever. The limit order book

immediately reacts to the information contained in the period t market order and the

low-latency liquidity providers post limit orders to buy and sell.

When a limit order is posted in period t, this order remains in the market until the

period t + 1 investor makes his trading choice.16 This limit order possibly interacts

with the period t + 1 investor’s market order. As with market orders, the limit order

book reacts to the information contained in the period t limit order, with a low-latency

liquidity provider posting a limit order on the opposite side of the book.

Investor Payoffs. The payoff to an investor who buys one unit of the security

in period t is given by the difference between the security’s fundamental value in

period t, Vt, and the price that the investor paid for this unit; similarly for a sell

decision. We normalize the payoff to a non-executed order to 0. Investors are risk

neutral, and they aim to maximize their expected payoffs. The period t investor with

16The assumption that limit orders last for a single period is common in the literature, see, e.g.,
Foucault (1999), and it ensures that the model is tractable.
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private valuation yt has the following expected payoffs to submitting, respectively, a

market buy order to trade immediately at the prevailing ask price askt and a limit buy

order at price bidt+1:

πMB
t,inv(yt, δt) = yt + E[Vt | δt, Ht]− askt − feeMinv (2)

πLB
t,inv(yt, δt, bidt+1) = Pr(MSt+1(bidt+1) | δt, Ht) (3)

×
(
yt + E[Vt+1 | δt, Ht,MSt+1(bidt+1)]− bidt+1 − feeLinv

)

where MSt+1(bidt+1) represents the period t+1 investor’s decision to submit a market

order to sell at price bidt+1 (this decision is further conditional on the additional infor-

mation available to the period t+1 investor); feeMinv and feeLinv denote the exchange fees

levied on investors trading with market and limit orders, respectively. An investor’s

payoff to submitting a limit order in period t accounts for the fact that a limit order

submitted in period t either executes or is cancelled in period t + 1. We focus on the

intraday trading, and we assume no discounting. Payoffs to sell orders are analogous.

Low-Latency Liquidity Provider Payoffs. A low-latency trader observes the

period t investor’s action before posting her period t limit order. Moreover, she will

post a limit buy order in period t only if the period t investor does not post a buy limit

order.17 A low-latency trader in period t has the following payoff to submitting a limit

buy order at price bidt+1 is given by

πLB
t,LLT(bidt+1) = Pr(MSt+1(bidt+1) | investor action at t, Ht) (4)

×
(
E[Vt+1 | Ht, investor action at t,MSt+1(bidt+1)]− bidt+1 − feeLLLT

)

where the exchange fee feeLLLT incurred by a low-latency trader when her limit order is

executed equals the maker rebate, i.e., feeLLLT = −f < 0; analogously for sell orders.

17With unit demands of investors, a low-latency trader has no incentive to post a limit order “into
a queue”: a market sell order that executes against the “first in the queue” order is informative, thus
the liquidity provider will want to modify her “second in the queue” order upon execution of the first.
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2 Equilibrium: All Pay Maker-Taker Fees

In this section, we assume that maker rebates and taker fees are passed through to all

market participants on a per-trade basis.

2.1 Pricing and Decision Rules

Equilibrium Pricing Rule. We look for an equilibrium, in which low-latency liquid-

ity providers post competitive limit orders and make zero profits, in expectation. We

denote the equilibrium bid and ask prices in period t by bid∗t and ask∗t , respectively, and

we use MB∗
t and MS∗

t denote, respectively, the period t investor’s decisions to submit

a market buy order price ask∗t and a market sell order at price bid∗t .

The low-latency liquidity provider payoffs, given by equation (4), then imply the

following competitive equilibrium pricing rules, for the maker rebate f :

bid∗t = E[Vt | Ht,MSt(bid
∗
t )] + f (5)

ask∗t = E[Vt | Ht,MBt(ask
∗
t )]− f (6)

where we used the fact that history Ht−1 together with the period t − 1 investor’s

action yield the same information about the security’s value Vt as history Ht (because

information about Vt is only publicly revealed through investors’ actions).

Investor Actions with Competitive Liquidity Provision. We focus on in-

vestor choices to buy; sell decisions are analogous. An investor can choose to submit

a market order or a limit order, and, if he chooses to submit a limit order, technically,

he may also choose the limit price. We search for an equilibrium where low-latency

liquidity providers ensure that bid and ask prices are set competitively and equal the

expected security value, conditional on the information available to the low-latency

liquidity providers. An investor’s choice of the limit price is thus mute, since a limit
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order that is posted at a price other than the prescribed, competitive equilibrium prices

either yields the submitter negative profits in expectation or does not execute, because

of the presence of low-latency traders. Because an investor is always able to obtain a

zero profit by abstaining from trade, we restrict attention to limit orders posted at the

competitive, equilibrium prices.

Non-Competitive Limit Orders. Formally, the zero probability of execution for

limit orders posted at non-competitive prices is achieved by defining appropriate beliefs

of market participants, regarding the information content of a limit order that is posted

at an “out-of-the-equilibrium” price (e.g., when the period t investor posts a limit order

to buy at a price different from bid∗t+1) — so-called out-of-equilibrium beliefs. The

appropriate definition of out-of-equilibrium beliefs is frequently necessary to formally

describe equilibria with asymmetric information. To see the role of these beliefs in

our model, observe first that when an order is posted at the prescribed, competitive

equilibrium price, market participants derive the order’s information content by Bayes’

Rule, using their knowledge of equilibrium strategies. The knowledge of equilibrium

strategies, however, does not help market participants to assess the information content

of an order that cannot occur in equilibrium — instead, traders assess such an order’s

information content using out-of-the-equilibrium beliefs. We describe these beliefs in

Appendix A, and we focus on prices and actions that occur in equilibrium in the

main text.

Investor Equilibrium Payoffs. Because innovations to the fundamental are

independent across periods, all market participants interpret the transaction history

in the same manner. A period t investor decision then does not reveal any additional

information about innovations δτ , for τ < t, and the equilibrium pricing conditions
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(5)-(6) can be written as

bid∗t = E[Vt−1 | Ht] + E[δt | Ht,MSt(bid
∗
t )] + f (7)

ask∗t = E[Vt−1 | Ht] + E[δt | Ht,MBt(ask
∗
t )]− f (8)

The independence of innovations across time further allows us to decompose in-

vestors’ expectations of the security’s value, to better understand investor equilibrium

payoffs. The period t investor’s expectation of the security’s value in period t is given by

E[Vt | δt, Ht] = δt + E[Vt−1 | Ht] (9)

When the period t investor submits a limit order to buy, his order will be executed

in period t+ 1 (or never), and we thus need to understand this investor’s expectation

of the time t + 1 value, conditional on his private and public information and on the

order execution, E[Vt+1 | δt, Ht,MSt+1(bid
∗
t+1)]. Since the decision of the period t + 1

investor reveals no additional information regarding past innovations, we obtain

E[Vt+1 | δt, Ht,MSt+1(bid
∗
t+1)] = E[Vt−1 | Ht] + δt + E[δt+1 | δt, Ht,MSt+1(bid

∗
t+1)] (10)

Further, the independence of innovations implies that, conditional on the period t

investor submitting a limit buy order at price bid∗t+1, the period t investor’s private

information of the innovation δt does not afford him an advantage in estimating the

innovation δt+1 or the probability of a market order to sell in period t + 1, relative

to the information Ht+1 that will be publicly available in period t + 1 (including the

information that will be revealed by the period t investor’s order). Consequently, the

period t investor’s expectation of the innovation δt+1 coincides with the corresponding

expectation of the low-latency liquidity providers, conditional on the period t investor’s

limit buy order at price bid∗t+1.
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The above insight, together with conditions (7)-(8) on the equilibrium bid and ask

prices, allows us to rewrite investor payoffs, given by expressions (2)-(3) as:

πMB
t (yt, δt) = yt + δt − E[δt | Ht,MBt(ask

∗
t )] (11)

πLB
t (yt, δt) = Pr(MSt+1(bid

∗
t+1)) | LBt(bid

∗
t+1), Ht)

(
yt + δt − E[δt | LBt(bid

∗
t+1), Ht]

)
(12)

where we used the fact that when investors pay exchange fees per-trade, an investor’s

fees for trading with market and limit orders, respectively, are feeMinv = f and feeLinv = − f .

Equations (11)-(12) illustrate, in particular, that investor payoffs are independent

of the exchange fees, provided the total exchange fee is 0. In the Internet Appendix,

we further show that, for a non-zero exchange fee, the levels of maker the rebate and

the taker fee only affect investor payoffs through the total exchange fee, consistent

with Colliard and Foucault (2012).

Proposition 1 (Independence of the Maker-Taker Split) For a fixed total ex-

change fee, investors’ equilibrium strategies and payoffs do not depend on the split of

the total fee into maker and taker fees.

Investor Equilibrium Decision Rules. An investor submits an order to buy if,

conditional on his information and on the submission of his order, his expected profits

are non-negative. Moreover, conditional on the decision to trade, an investor chooses

the order type that maximizes his expected profits. An investor abstains from trading

if he expects to make negative profits from all order types.

Expressions (11)-(12) illustrate that the period t investor payoffs, conditional on

the order’s execution, are determined by this investor’s informational advantage with

respect to the period t innovation to the fundamental value (relative to the information

content revealed by the investor’s order submission decision) and by the investor’s

private valuation of the security. Our model is stationary, and in what follows, we

restrict attention to investor decision rules that are independent of the history but are
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solely governed by an investor’s private valuation and his knowledge of the innovation

to the security’s value.

When the decision rules in period t are independent of the history Ht, the public

expectation of the period t innovation, conditional on the period t investor’s action,

does not depend on the history either. Expressions (11)-(12) reveal that neither do

investor equilibrium payoffs. Our setup is thus internally consistent in the sense that

the assumed stationarity of the investor decision rules does not preclude investors from

maximizing their payoffs.

Expected payoffs of a period t investor are affected by the realizations of his private

value yt and the innovation δt only through the sum of this investor’s realized private

value yt and his expectation of δt, conditional on the period t investor’s information.

We thus focus on decision rules with respect to this sum, which we refer to it as the

aggregate valuation, and we denote the period t investor’s aggregate valuation by

zt = yt + δt (13)

The aggregate valuation zt is symmetrically distributed on the interval [−2, 2].

2.2 Equilibrium Characterization

We first derive properties of market and limit orders that must hold in equilibrium.

Our setup is symmetric, and we focus on decision rules that are symmetric around

the zero aggregate valuation, zt = 0. We focus on equilibria where investors use both

limit and market orders.18 Appendix A establishes the following result on the market’s

reaction to market and limit orders.

Lemma 1 (Informativeness of Trades and Quotes) In an equilibrium where in-

vestors use both limit and market orders, both trades and investors’ limit orders contain

18Any equilibrium where low-latency liquidity providers are the only liquidity providers closely
resembles equilibria in market maker models in the tradition of Glosten and Milgrom (1985). In such
an equilibrium, trading roles are pre-defined and maker-taker fees have no economic impact.
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information about the security’s fundamental value; a buy order increases the expecta-

tion of the security’s value and a sell order decreases it.

Lemma 1 implies that a price improvement stemming from a period t investor’s

limit buy order at the equilibrium price bid∗t+1 > bid∗t increases the expectation of a

security’s value. In our setting, such a buy order will be immediately followed by a

cancellation of a sell limit order at the best period t price ask∗t and a placement of a new

sell limit order at the new ask price ask∗t+1 > ask∗t by a low-latency liquidity provider.

Lemma 2 (Equilibrium Market and Limit Order Submission) In any equilib-

rium with symmetric time-invariant strategies, investors use threshold strategies: in-

vestors with the most extreme aggregate valuations submit market orders, investors

with moderate aggregate valuations submit limit orders, and investors with aggregate

valuations around 0 abstain from trading.

To understand the intuition behind Lemma 2, observe first that, conditional on

order execution, an investor’s payoff is determined, loosely, by the advantage that his

aggregate valuation provides relative to the information revealed by his order (see ex-

pressions (11)-(12)). Second, since market orders enjoy guaranteed execution, whereas

limit orders do not, for limit orders to be submitted in equilibrium, the payoff to an

executed limit order must exceed that of an executed market order. Consequently,

the public expectation of the innovation δt, conditional on, say, a limit buy order in

period t, must be smaller than the corresponding expectation, conditional on a market

buy order in period t (in other words, the price impact of a limit buy order must be

smaller than that of a market buy order). For this ranking of price impacts to occur,

investors who submit limit orders must, on average, observe lower values of the inno-

vation than investors who submit market buy orders. With symmetric distributions of

both, the innovations and investor private values, we arrive at the previous lemma.
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2.3 Equilibrium Existence

Utilizing Lemmas 1 and 2, we look for threshold values zM and zL < zM such that

investors with aggregate valuations above zM submit market buy orders, investors with

aggregate valuations between zL and zM submit limit buy orders, investors with ag-

gregate valuations between −zL and zL abstain from trading. Symmetric decisions are

taken for orders to sell. Investors with aggregate valuations of zM and zL are marginal,

in the sense that the investor with the valuation zM is indifferent between submitting

a market buy order and a limit buy order, and the investor with the valuation zL is

indifferent between submitting a limit buy order and abstaining from trading. Us-

ing (11)-(12), and the definition of the aggregate valuation (13), thresholds zM and zL

must solve the following equilibrium conditions

zM − E[δt | MB∗
t ] = Pr(MS∗

t+1)×
(
zM − E[δt | LB

∗
t ]
)

(14)

zL = E[δt | LB
∗
t ] (15)

where the stationarity assumption on investors’ decision rules allows us to omit condi-

tioning on the history Ht; MB∗
t denotes a market buy order in period t, which occurs

when the period t investor aggregate valuation zt is above zM (zt ∈ [zM , 2]), LB∗
t de-

notes a limit buy order in period t (zt ∈ [zL, zM)), and MSt+1 denotes a market order to

sell in period t+1 (zt+1 ∈ [−2,−zM ]). Given thresholds zM and zL, these expectations

and probabilities are well-defined and can be written out explicitly, as functions of zM

and zL (and independent of the period t).

Further, when investors use thresholds zM and zL to determine their decision rules,

the bid and ask prices that yield zero profits to low-latency liquidity providers, given
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by the expressions in (5)-(6), can be expressed as

bid∗t = pt−1 + E[δt | zt ≤ −zM ] + f (16)

ask∗t = pt−1 + E[δt | zt ≥ zM ]− f (17)

where pt−1 ≡ E[Vt−1|Ht]. The choice of notation for the public expectation of the

security’s value recognizes that this expectation coincides with a transaction price in

period t − 1 (when such a transaction occurs). Since the innovations are distributed

symmetrically around 0, the public expectation of the period t value of the security at

the very beginning of period t, E[Vt|Ht], also equals pt−1.

Expanding the above expressions one step further, for completeness, investors who

submit limit orders to buy and sell in period t, in equilibrium, will post them at

prices bid∗t+1 and ask∗t+1, respectively, given by

bid∗t+1 = pt−1 + E[δt | zt ∈ [zL, zM )] + E[δt+1 | zt+1 ≤ −zM ] + f (18)

ask∗t+1 = pt−1 + E[δt | zt ∈ (−zM ,−zL]] + E[δt+1 | zt+1 ≥ zM ]− f (19)

For an equilibrium to exist, we require that the bid-ask spread is positive. In the

absence of fees, the bid-ask spread is positive as long as market orders are informative.

When f 6= 0, however, this is no longer the case. Equations (16)-(17) imply that in

the equilibrium where all pay maker-taker fees, ask∗t − bid∗t > 0 if and only if

f < E[δt | zt ≥ zM ] (20)

Finally, as discussed above, the equilibrium is supported by out-of-the-equilibrium be-

liefs such that low-latency liquidity providers outid all non-competitive prices. When

the bid-ask spread is sufficiently wide, however, a low-latency liquidity provider may

not be able to outbid an investor with a sufficiently high aggregate valuation (above the

highest possible value of the innovation), and the equilibrium may not exist. Specifi-
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cally, an equilibrium where low-latency liquidity providers outbid all non-competitive

prices exists, provided that the cum-fee spread is bounded by the highest possible value

of innovation δt, which is 1 in our setting:19

2 · E[δt | zt ≥ zM ]− 2f ≤ 1 (21)

We prove the following existence theorem in Appendix A:20

Theorem 1 (Equilibrium Characterization and Existence) There exist values zM

and zL, with 0 < zL < zM < 2, that solve indifference conditions (14)-(15). These

threshold values constitute an equilibrium in a setting where investors pay maker-taker

fees on a per-trade basis, for any history Ht, given competitive equilibrium prices, bid∗t

and ask∗t in (16)-(17), for the following trader decision rules, if conditions and (21)

and (20) are satisfied. The investor who arrives in period t with aggregate valuation zt

• places a market buy order if zt ≥ zM ,

• places a limit buy order at price bid∗t+1 if zL ≤ zt < zM ,

• abstains from trading if −zL < zt < zL.

Investors’ sell decisions are symmetric to buy decisions.

3 Equilibrium: Investors Pay Flat Fees

We now study the market where investors pay only the average exchange fee, through

a flat fee per trade. Long-term investors typically trade through a broker, and the

flat-fee setting reflects a common practice by brokers of levying a flat fee per trade on

their clients. Since the limit order book is always full, the period t investor’s market

19This assumption effectively restricts the aggregate amount of the information in the model; model
assumption different to the current version (e.g., a restriction on the fraction of traders who become
informed) may lead to a similar outcome.

20Appendix A further provides the out-of-the-equilibrium beliefs that support the equilibrium prices
and decision rules, described in Theorem 1.
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order will incur the taker fee f with certainty, and a period t investor’s limit order to

buy (sell) will receive the maker rebate f , provided that a market order to sell (buy)

is submitted in period t + 1. The expected fee f̄t that the exchange receives from the

period t investor, conditional on the execution of this order, is then given by

f̄t =
f · [Pr(MB∗

t ) + Pr(MS∗
t )] + (−f) · [Pr(LB∗

t ) · Pr(MS∗
t+1) + Pr(LSt) · Pr(MB∗

t+1)]

Pr(MB∗
t ) + Pr(MS∗

t ) + Pr(LB∗
t ) · Pr(MS∗

t+1) + Pr(LS∗
t ) · Pr(MB∗

t+1)

(22)

where LB∗
t and MB∗

t denote the period t investor’s market and limit orders to buy at

the equilibrium bid and ask prices; likewise for the sell orders and orders in period t+1.

As in Section 2, we focus on an equilibrium where investors use stationary, time-

invariant threshold strategies with respect to their aggregate valuation zt = yt + δt.

Because innovations δt to the security’s value and investor private valuations yt are

identically and independently distributed across time, probabilities of market and limit

orders to buy and to sell are time-invariant. We continue to focus on a symmetric

equilibrium, where investors decisions to buy and sell are symmetric with respect to the

aggregate valuation zt = 0, so that the probability of a market buy order then equals the

probability of a market sell order; likewise for limit orders. Consequently, the expected

per-investor fee does not depend on period t. Denoting this fee by f̄ and writing

Pr(LB∗) for the probability of a limit (buy) order in equilibrium, we simplify (22) to

f̄ =
1− Pr(LB∗)

1 + Pr(LB∗)
· f (23)

Since low-latency liquidity providers receive maker rebates and act competitively,

limit order book prices are determined by the same conditions as in the all pay maker-

taker fees setting (conditions (7)-(8)). Investor payoffs, however, are affected by the
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flat fee f̄ . With the decision rules being stationary, these payoffs are given by

πMB(yt, δt) = yt + δt − (E[δt | MB∗
t ]− f)− f̄ (24)

πLB(yt, δt) = Pr(MS∗
t+1 | LB

∗
t )
(
yt + δt − (E[δt | LB

∗
t ] + f)− f̄

)
(25)

where LB∗
t and MB∗

t denote investors’ limit and market buy orders at the equilibrium

competitive prices; the stationarity of investor decision rules allows us to drop the

dependence on the history. Substituting in the expression (23) for the flat fee, we

obtain

πMB∗

(yt, δt) = yt + δt − E[δt | MB∗
t ] +

2Pr(LB∗
t )

1 + Pr(LB∗
t )

· f (26)

πLB∗

(yt, δt) = Pr(MSt+1 | LB
∗
t )

(
yt + δt − E[δt | LB

∗
t ]−

2

1 + Pr(LB∗
t )

· f

)
(27)

Equations (26)-(27) illustrate, in particular, that when only investors pay a flat fee per

trade, their payoffs are affected by the maker (or taker) fee beyond the effect of the

total exchange fee. The split between the taker fee and the maker rebate will thus be

economically relevant in this setting.

3.1 Equilibrium Characterization

Expression (23) illustrates that the flat fee coincides with the sign of the maker rebate.

In particular, when the maker rebate is positive, brokers always set a positive flat fee

(despite the zero total fee). The presence of low-latency liquidity providers ensures that

market orders always execute, whereas limit orders only execute when another investor

submits a market order. Low-latency liquidity providers must capture a fraction of the

maker rebates, leaving investors to pay a positive exchange fee.

Lemma 3 (Flat Fee) The average exchange fee per investor trade f̄ is positive when

the maker rebate is positive, and it is negative when the maker rebate is negative.
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Our further results on the flat fee setting are numerical. We employ the following

family of distributions of the innovation parameter δt, for α ≥ 1.21

ḡ(δ, α) =





(1−δ)(α−1)

α
if δ ≥ 0

(1+δ)(α−1)

α
if δ ≤ 0

(28)

We numerically search for an equilibrium, with properties similar to those in Sec-

tion 2. Specifically, we look for an equilibrium where investors use threshold rules

that are symmetric and that do not depend on the history, such that investors with

most extreme aggregate valuations trade with market orders, investors with moderate

aggregate valuations trade with limit orders, and investors with aggregate valuations

around 0 abstain from trading. The equilibrium indifference conditions are analogous

to conditions (14)-(15), except that they are adjusted for the exchange fees, using (26)-

(27):22

zM − E[δt | MB∗
t ] + f − f̄ = Pr(MS∗

t+1)
(
zM − E[δt | LB

∗
t ]− f − f̄

)
(29)

zL = E[δt | LB
∗
t ] + f + f̄

where the flat fee f̄ is given by (23).

4 Impact of Maker-Taker Fees

We analyze the impact of an increase in the maker rebate (and the taker fee), measured

by an increase in f , on quoted and cum-fee bid-ask spreads, trading volume, and market

participation. The quoted bid-ask spread is the difference between the ask and bid

prices. The cum-fee spread additionally accounts for the fee paid by a submitter of a

market order; this fee is the taker fee in the all pay maker-taker fees setting and the

21Density 2ḡ is a Beta-distribution on [0,1].
22Numerically, the solution is always unique. If it were not unique, we would focus on the one that

delivers the smallest bid-ask spread in equilibrium.
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flat fee f̄ in the flat fee setting. We measure market participation by the probability

that an investor does not abstain from submitting an order, and we measure trading

volume by the probability that an investor submits a market order (since market orders

always execute in our setting).

Theorem 1 implies the following result for the setting where all market participants

pay maker-taker fees per-trade.

Corollary 1 (Impact of Maker-Taker Fees: All Pay Maker Taker Fees) In an

equilibrium of the symmetric fee setting, thresholds zM and zL, market participation,

trading volume, and cum-fee bid-ask spreads are independent of f . Quoted bid ask-

spreads decline in f .

Trading Volume and Market Participation. Equations (24)-(25), which define

investor payoffs in the flat fee setting, illustrate that, ceteris paribus, an increase in the

maker rebate provides investors with incentives to switch from limit to market orders.

All else equal, such an increase will decrease the spread, thus increasing the payoff to

market orders and simultaneously reducing the payoff to limit orders. In contrast to

the all pay maker-taker fees setting, however, changes in the bid-ask spread are not

offset by the changes in investor fees — because the flat fee charged by brokers does

not depend on the order type. Since trade occurs in our model when a market order

is submitted, an increase in the probability of a market order implies an increase in

trading volume.

The impact on investors who were previously indifferent between submitting a limit

order and abstaining from trading is more complex. On the one hand, ceteris paribus,

as traders increase their usage of market orders, limit orders are submitted by less

informed traders, the price impact of a limit order declines, and limit orders become

more attractive. On the other hand, an increase in the maker rebate leads to a decline

in the bid-ask spread, making limit order prices less attractive to investors who do not
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receive the rebate. Numerical simulations reveal that the latter effect dominates in our

setting; that is, market participation declines.

What happens when the maker rebate is very large? As the taker fee

and the maker rebate increase, threshold zM decreases and threshold zL increases.

When the maker rebate is sufficiently high (relative to the spread), a limit order yields

negative profits to investors in expectation, because they do not receive maker rebates.

When this happens, low-latency liquidity providers become the only submitters of limit

orders, while investors trade exclusively with market orders. As a consequence, the flat

fee equals the taker fee. The marginal submitter of a market order is then exactly

indifferent between submitting a market order and abstaining from trading, and he

earns zero expected profits. We denote the aggregate valuation of such a marginal

submitter by z0, and the value of f that yields zM = zL = z0 in equilibrium by f0.

Using investor payoffs, given by expressions (24)-(25), together with f̄ = f , we find

that z0 solves

z0 − E[δt|zt ≥ z0] = 0 (30)

A further increase in the maker rebate (above f0) then leads to a further decline in the

quoted spread but does not have an effect on investors payoffs, because a decline in the

quoted spread is exactly offset by an increase in the average fee, which equals the taker

fee. As with the all pay maker-taker fees setting, an equilibrium fails to exist when

the maker rebate is so large that the bid-ask spread becomes nonpositive. Similarly to

condition (21) for the setting where all market participants pay maker-taker fees per-

trade, the bid-ask spread remains positive for fees f that are below value f1 that solves

f1 = E[δt | zt ≥ zM0 ] (31)

What happens when the maker rebate is negative? When f < 0, i.e. limit order

submitters pay a positive fee for executed orders, whereas market order submitters
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receive a positive taker rebate, liquidity providers offer less than the expected value of

the security when buying and they demand more than the expected value when selling

the security. Consequently, as the maker fee (−f) increases from 0, quoted spreads

widen. Investors pay a flat fee (in this case, the fee is negative, so they receive a

flat positive rebate), therefore market orders become less attractive to them and limit

orders become more attractive.

Intuitively, when the maker fee is positive and high (f is low and negative), the bid

ask spread becomes too wide, market orders earn negative profits for all investors (even

after accounting for the positive flat rebate that investors receive on each transaction),

and trade does not occur. The equilibrium of the model relies on the ability of low-

latency liquidity providers to compete with investors. In the present setting, the spread

will widen to the point where a low-latency liquidity provider is unable to outbid

investors with sufficiently high valuations without making a loss. In the present version

of the paper, we thus restrict attention to a positive maker rebate.

Figure 2 illustrates the following observation on order submission decisions.

Numerical Observation 1 (Fee Thresholds and Equilibrium Actions: Flat Fee)

There exist f0, f1, with 0 < f0 < f1, such that in the flat fee setting

(i) investors submit both market and limit orders in equilibrium with f < f0;

t (ii)investors submit only market orders in equilibrium when f0 ≤ f < f1;

(iii)a stationary equilibrium with trade does not exist when f ≥ f1.

Threshold f0 is the value of f that yields solutions zM = zL = zM0 to equations (29),

and threshold f1 solves (31).

Figure 3 illustrates the following observation on probabilities of order submissions

and the implications for trading volume and market participation.

Numerical Observation 2 (Volume and Market Participation: Flat Fee) As the

maker rebate f increases, for 0 ≤ f ≤ f0, the probability that an investor
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(i) submits a market order increases (trading volume increases);

(ii) submits a limit order decreases;

(iii)abstains from trading (weakly) increases (market participation declines).

These probabilities do not depend on f when f0 < f < f1 (i.e., when the maker rebate

is sufficiently large and investors trade only with market orders).

Quoted Bid-Ask Spread. As the maker rebate increases (f increases), more

investors submit market orders, that is they submit aggressive orders for lower values

of the innovations δt. Furthermore, as f increases, the bid-ask spread declines because

low-latency liquidity providers compete the benefits of the increased rebate away. Both

of these effects lead to a decline in the quoted bid-ask spread.

Cum-Fee Bid-Ask Spread. The cum-fee spread accounts for the fee that an

investor pays to his broker:

cum-fee spread = ask∗t − bid∗t + 2f̄ (32)

where the factor 2 accounts for the fact that the bid-ask spread is a cost of a round-trip

transaction, so that the fee is paid twice. As the maker rebate increases (f increases),

the probability of a limit order declines, and expression (23) reveals that f̄ increases

as long as f < f0. Numerically, this increase is more than offset by the decline in the

quoted spread, so that the cum-fee spread declines. Figure 4 illustrates the follow-

ing observation

Numerical Observation 3 (Quoted and Cum-Fee Spreads: Flat Fee) As the taker

fee and the maker rebate increase (f increases), for 0 < f < f1,

(i) the quoted bid-ask spread declines;

(ii) the broker flat fee f̄ increases;

(iii) the cum-fee spread declines for f < f0, and it is independent of f for f ≥ f0 (when

investors trade only with market orders).
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Price Impact. The price impact of a trade measures the change in the public

expectation following the execution of a trade. In our model, this change is determined,

loosely, by the information content of market orders about the time-t innovation δt.

Specifically, the price impact of a buyer-initiated transaction is given by:

price impactbuy,t = E[Vt | MBt]− pt−1 = E[δt | MBt] (33)

Using expression (17) for the equilibrium ask price ask∗t , we find that for a positive

maker rebate ( f > 0) the price impact of a trade is higher than indicated by a

transaction price:

price impactbuy,t = E[δt | MBt] = ask∗t + f − pt−1 > ask∗t − pt−1 (34)

Figure 5 illustrates the above relation between the quoted half-spread, ask∗t − pt−1.

Numerical Observation 2 illustrated, in particular, that as the taker fee f increases,

the marginal submitter of a market order requires a lower aggregate valuation. Market

orders are then submitted for lower absolute values of realizations of the innovations δt.

This insight explains the following numerical observation, illustrated by Figure 5.

Numerical Observation 4 (Price Impact: Flat Fee) The price impact of a trade is

decreasing in the level of the maker rebate f on [0, f0], and constant on (f0, f1] (when

investors trade only with market orders).

Numerical Observation 4 is supported empirically by Malinova and Park (2011).

Welfare. Each investor in our setting has a private valuation for the security, and

we follow Bessembinder, Hao, and Lemmon (2012) to define a social welfare measure

that reflects allocative efficiency. Specifically, we define welfare as the expected gain

from trade in the market for a given period t. If a transaction occurs in period t, then

the welfare gain is given by the private valuation of a buyer, net of the exchange fee
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paid by the buyer, minus the private valuation of a seller, net of the exchange fee paid

by the seller.

A transaction in period t occurs when the period t investor submits a market buy

or a market sell order. Focusing on a submitter of a buy market order: this investor

trades with the period t− 1 investor if the period t− 1 investor submitted a limit sell

order and he trades with a low-latency liquidity provider otherwise. With a flat fee

set to equal the average fee paid by an investor, the expected aggregate fee on each

transaction is zero. Accounting for the fact that a low-latency liquidity supplier has a

zero private valuation, by symmetry, we obtain the following expression for the welfare:

Wt = 2 · Pr(MBt) (E[yt | Ht,MBt]− Pr(LSt−1) · E[yt−1 | Ht−1,MBt,LSt−1]) (35)

Theorem 1 implies the following result for the case where investors pay maker-taker

fees on a trade-by-trade basis.

Corollary 2 (Social Welfare: All Pay Maker-Taker Fees) In a setting where in-

vestors pay maker-taker fees on a per-trade basis, expected total welfare Wt is not af-

fected by the split of the total exchange fee into a maker rebate and a taker fee.

When the maker fee increases (and the taker fee increases by the same amount),

quoted spread narrows, and two changes happen. First, some investors switch from

submitting limit orders to trading with market orders, increasing the execution prob-

ability of their own order (to certainty), and also increasing the execution probability

of a limit order, the so-called fill rate, for the remainder of the limit order submitters.

Second, some investors switch from submitting limit orders to abstaining from trade,

failing to realize any potential gains from trade. Figure 6 and Numerical Observation 5

illustrate that the benefit of an increased fill rate to investors who remain in the mar-

ket exceeds the loss of potential gains from trade to investors who choose to leave the

market.
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Numerical Observation 5 (Social Welfare: Flat Fee) In a setting where investors

pay a flat fee per trade, expected total welfare Wt is increasing in the level of the maker

rebate f on [0, f0], and it is constant in f on (f0, f1] (when investors trade only with

market orders).

In a world where exchange maker-taker fees are only passed through on average,

our results suggest that positive maker rebates have a positive effect on social welfare.

Allocative efficiency is highest when investors only trade with market orders (or not

at all). An implication of our result on social welfare is that it is socially beneficial for

investors and low-latency liquidity providers to specialize: investors submitting market

orders, and; low-latency liquidity providers providing liquidity.

The intuition for the welfare increase stems from the increased frequency of investors

realizing their gains from trade. Low-latency liquidity providers do not have any private

values and thus do not receive any gains from trade. Since these traders ensure that

the limit order book is always full, liquidity provision by investors is socially inefficient.

An investor who submits a limit order faces the risk of non-execution for his own limit

order and also possibly imposes a negative externality on the previous period investor

if that investor’s limit order did not get executed. As discussed above, in the presence

of low-latency liquidity providers, the flat fee is positive but below the taker fee. Under

the flat fee structure, market orders incur the taker fee but their submitters pay the

lower flat fee, whereas limit orders deliver the rebate, yet their submitters pay the

fee. Flat fee thus effectively works as a tax that redistributes the exchange fee among

investors with heterogeneous valuations and mitigates the aforementioned externality.

5 Conclusion

We provide a model to analyze a financial market where investors trade for informa-

tional and liquidity reasons in a limit order book that is monitored by low-latency
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liquidity providers. Methodologically, price competition between informed investors

and uninformed low-latency market makers is a key feature of our model; it allows us

study the impact of exogenous market factors on the tradeoffs between market and

limit orders.

We apply our model to study the impact of maker-taker fees. When all traders pay

the maker-taker fees, investor behavior is affected only through the total fee charged

by the exchange (the taker fee minus the maker rebate), consistent with Colliard and

Foucault (2012). When, however, we study the most common implementation of the

maker-taker fees through a flat fee levied on investors (e.g., Fidelity cites a flat fee of

$7.95 per trade on their website), the split of the total exchange fee into the maker

fee and the taker fee also plays a meaningful role (even when the maker-taker fees are

passed through to investors on average).

Our empirical predictions support the industry’s opinions on the impact of maker-

taker pricing on long-term investors. Indeed, we predict that if a positive maker rebate

is introduced (financed by an increase in the taker fee), investors trade on the liquidity

demanding side more frequently, submit fewer limit orders, and choose to abstain from

trading more often. As investors realize their gains from trade more frequently, alloca-

tive efficiency improves. Our model also predicts an increase in the average exchange

fee that a broker incurs when executing client orders, consistent with industry concerns.

Contrary to industry opinions, we find that trading costs for liquidity demanders de-

crease, because a decline in the quoted spreads more than offsets the increase in the

average exchange fee. One key contributor to the decline in trading costs for liquidity

demanders is the decrease in price impact of trades — as more less-informed investors

trade aggressively, using market orders, trades become less informative. Malinova and

Park (2011) find empirical support for our predictions.

Our results have several policy implications. First, we find that in markets where

brokers charge investors a flat fee per trade, the levels of maker and taker fees have
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an economic effect beyond that of the total exchange fee. Our results show, in partic-

ular, that when the fee is passed through only on average, through a flat commission,

investors’ trading incentives are different to the situation where investors pay taker

fees and receive maker rebates for each executed trade. The flat fee improves welfare

by acting as a tax on the socially inefficient liquidity provision by investors and as a

subsidy for investors who trade with market orders.

Second, we reiterate the importance of accounting for the exchange trading fees

(see, e.g., Angel, Harris, and Spatt (2011), Colliard and Foucault (2012), or Battalio,

Shkilko, and Van Ness (2012).) A lower quoted spread need not imply lower trading

costs for investors, and consequently, routing orders to the trading venue that is quoting

the best price need not guarantee the best execution.

Third, we caution that the causal relations among trading volume, trading costs,

and competition for liquidity providers are more complex than the taken-at-face-value

intuition would suggest. An increase in volume in our setting is driven by changes in

investor trading behavior. These changes necessitate a higher rate of participation by

low-latency liquidity providers, which may manifest itself empirically as an increase in

competition among low-latency liquidity providers.23 Hence, an empirically observed

increase in competition need not be the driving force of changes in trading volume and

trading costs.

23In our model, low-latency liquidity providers compete in prices; empirical assessments typically
measure competition in quantities.
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A Appendix

A.1 Proofs of Lemmas 1 and 2

Proof. In the main text, we present the two lemmas separately, for the ease of ex-

position. Here we establish the two results simultaneously. We restrict attention to

an equilibrium where investors use symmetric, time-invariant strategies and trade with

both, market and limit orders. Since we search for an equilibrium with competitive

pricing, an investor’s equilibrium action does not affect the price that he pays or the

probability of his limit order execution. We show, in 5 steps, that in any such equilib-

rium investors must use decision rules that lead to Lemmas 1 and 2.

Step 1: In any equilibrium, an investor with the aggregate valuation zt prefers a

market (limit) buy order to a market (limit) sell order if and only if zt ≥ 0.

Proof: Using (11), an investor’s payoff to a market buy order is zt−E[δt | Ht,MBt(ask
∗
t )].

When innovations δt are independent across time and investors’ equilibrium strategies

are time-invariant functions of zt, the expectation E[δt | Ht,MBt(ask
∗
t )] does not de-

pend on the history Ht or on the ask price ask∗t . With symmetric decision rules,

E[δt | MBt] = −E[δt | MSt]; investor payoff (11) and an analogous payoff for sell or-

ders then yield Step 1 for market orders. Similarly, symmetry, expression (12) and an

analogous expression for limit sell orders yield the result for limit orders.

Step 2: In any equilibrium, there must exist z∗ ∈ (0, 2) such that an investor with

aggregate valuation zt prefers a market buy order to a limit buy order if and only

if zt ≥ z∗, with indifference if and only if zt = z∗.

Proof: Comparing investor equilibrium payoffs (11) and (12), an investor with valua-

tion zt prefers a market buy order to a limit buy order if and only if

zt ≥
E[δt | MBt]− Pr(MSt)E[δt | LBt]

1− Pr(MSt)
≡ z∗. (36)
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The fraction in (36) is well-defined in an equilibrium where investors submit both

market and limit orders, since 0 < Pr(MSt) < 1. Next, for investors to submit limit

orders with positive probability, there must exist z such that for the investor with the

aggregate valuation zt = z, the payoff to a limit buy order (i) exceeds that to the

market buy order and (ii) is non-negative. For this z, we then have

z − E[δt | MBt] ≤ Pr(MSt)(z − E[δt | LBt]) ≤ z − E[δt | LBt] (37)

Hence, E[δt | MBt] ≥ E[δt | LBt]. Since 0 < Pr(MSt) < 1, the following inequalities are

strict: E[δt | MBt] > Pr(MSt)E[δt | LBt] and z∗ > 0.

Step 3: In any equilibrium, submitting the market buy order is strictly optimal for

an investor with aggregate valuation zt > z∗.

Proof: By Steps 1 and 2, an investor with valuation zt such that zt > z∗ > 0 strictly

prefers a market buy order to a market sell order and to a limit buy order (and,

consequently, by Step 1, to a limit sell order). Finally, an investor with valuation

zt > z∗ strictly prefers submitting a market order to abstaining from trade, as:

zt − E[δt | MBt] >
E[δt | MBt]− Pr(MSt)E[δt | LBt]

1− Pr(MSt)
− E[δt | MBt] ≥ 0,

where the last inequality follows since E[δt | LBt] ≤ E[δt | MBt] by Step 2.

Step 4: In any equilibrium, an optimal action for an investor with aggregate valuation

zt ∈ (0, z∗) must be either a limit buy order or a no trade.

Proof: This investor prefers a limit buy order to a market buy order by Step 2, and

The investor prefers a limit buy order to a limit sell order by Step 1, which in turn is

preferred by a market sell order by symmetry and Step 2.
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Step 5: There exists z∗∗ ∈ (0, z∗) such that an investor with the valuation zt = z∗∗

is indifferent between submitting a limit buy order and abstaining from trade; it

is strictly optimal for an investor with valuation zt ∈ (z∗∗, z∗) to submit a limit

buy order, and it is strictly optimal for an investor with valuation zt ∈ [0, z∗∗) to

abstain from trading.

Proof: In an equilibrium where investors submit both market and limit orders the

probability of a limit order is strictly positive, consequently, the limit buy order is

preferred to abstaining from trade if and only if an investor’s valuation zt > E[δt | LBt]

(and, by Step 4, the limit buy order is then the optimal action for this investor, and

abstaining from trade is optimal for an investor with zt < E[δt | LBt]). For investors

to submit both market and limit orders with non-zero probability, in equilibrium we

must have E[δt | LBt] < z∗ (otherwise, by Step 3, any investor, except for the zero-

probability case of zt = z∗ that prefers the limit order to abstaining from trade also

strictly prefers the market buy order to the limit buy order). We are looking for a

stationary equilibrium and the distribution of δt does not depend on t, hence E[δt | LBt]

does not depend on t and we can thus set z∗∗ = E[δt | LBt].

What remains to be shown is that E[δt | LBt] > 0. We proceed by contradiction.

Suppose not and E[δt | LBt] ≤ 0. Then, by Steps 1-4, in a symmetric equilibrium,

the limit buy is strictly optimal for an investor with z ∈ (0, z∗); it is strictly optimal

for an investor with z > z∗ to submit the market buy order; it is strictly optimal for

an investor with valuation zt < 0 to submit either the market or the limit sell orders;

finally, investors with zt = 0 and zt = z∗ are indifferent between the limit buy and a

different action (the limit sell and the market buy, respectively) and they occur with

zero probability. This implies that limit buy orders are only submitted by investors

whose aggregate valuations are (weakly or strictly) in the interval of [0, z∗] and only

by these investors. But then E[δt | LBt] = E[δt | zt ∈ (0, z∗)] > 0, a contradiction.24

24The inequality follows because z = yt + δt, where yt and δt are independent and symmetrically
distributed on [−1, 1]; the explicit derivation of this expectation is in the Internet Appendix.
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Steps 1-5 show that threshold rules are optimal in any symmetric, time-invariant

equilibrium where traders submit both market and limit orders, and that investors

with the more extreme valuations submit market orders, investors with moderate val-

uations submit limit orders, and investors with valuations close to zero abstain from

trade. Given threshold rules described in these steps, (investors’) quotes are informa-

tive because E[δt | LBt] = E[δt | z ∈ (z∗∗, z∗)] > 0 and trades are informative because

E[δt | MBt] = E[δt | z ∈ (z∗, 2)] > 0. Furthermore, by the proof of Step 2, a trade has

a higher price impact than a quote.

A.2 Proof of Theorem 1

A.2.1 Preliminary Notation and Results

Equilibrium thresholds solve equations ((14)-(15)). An informed investor submits a

market buy over a limit buy as long as zt ≥ zM , submits a limit buy if zM > zt ≥ zL,

and abstains from trading otherwise. To show existence of a threshold equilibrium,

we need to show existence of thresholds zM and zL and prove the optimality of in-

vestor strategies. Given symmetric threshold decision rules and stationarity of the

equilibrium, equilibrium conditions ((14)-(15)) can be rewritten as:

zM − E[δt | zt ∈ [zM , 2]] = Pr(zt ∈ (zM , 2])(zM − E[δt | zt ∈ [zL, zM )]), (38)

zL = E[δt | zt ∈ [zL, zM )]. (39)

In what follows, we omit subscript t and use the following short-hand notion for

the expectations of the innovation δt and the probability of a limit order execution:

EMδ := E[δt | zt ∈ [zM , 2]]; (40)

prM := Pr(zt ∈ (zM , 2]); (41)

ELδ := E[δt | zt ∈ [zL, zM)]). (42)
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With slight abuse of notation, we view EMδ,ELδ, and prM as functions of zL and zM .

In the main text, we assume that the innovation δt is distributed on [-1,1], sym-

metrically around 0, according to the density function ḡ. By symmetry, we can define

g as the density function on [0, 1] such that ḡ(·) = g(·)/2 on [0, 1] and g is decreasing;

denote the corresponding distribution function by G. Since g is decreasing, we obtain

the following lemma by direct computation (details will be available in the Internet

Appendix):

Lemma 4 Function g satisfies: (1−G(δ))(1− δ) < g(δ) < G(δ)/δ, for all δ ∈ (0, 1).

A.2.2 Proof Outline

We proceed in 4 steps. In step 1, we show that for any given zM ∈ [0,3/4] there exists the

unique zL that solves (39).25 We denote this solution by zL∗ (z
M ) and show, in Step 2,

that zL∗ (z
M ) is increasing in zM . In Step 3, we show that there exists zM that solves

zM − EMδ = prM(zM − zL∗ (z
M)). (43)

Finally, in Step 4, we show the optimality of the strategies and discuss out-of-equilibrium

beliefs that support these strategies in a perfect Bayesian equilibrium.

A.2.3 Step 1: Existence and Uniqueness of zL∗ (z
M )

We first derive the expression for ELδ in terms of the model primitives:

ELδ =

∫ 1

−1
dδ

∫ 1

−1
dy(δ · hL(δ, y|LB))

∫ 1

−1
dδ

∫ 1

−1
dy(hL(δ, y|LB))

, (44)

25Threshold 3/4 may seem arbitrary, but we can also show, for decreasing g, that there does not
exist zM > 3/4 that solves (38) for E

Lδ ≥ 0 (which, by the proof of Lemmas 1 and 2 must hold in
any symmetric stationary equilibrium where investors use both market and limit orders). The proof
will be provided in the Internet Appendix. The idea is that when zM is high, the price impact of a
market order is The bound is derived using the uniform density;
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where function hL(δ, y|LB) is defined as follows:

hL(δ, y|LB) =





1
2
· ḡ(δ), if δ ∈ [zL − 1, 1] and y ∈ [zL − δ, zM − δ]

0, otherwise.
(45)

The denominator of (44) equals the probability of a limit buy order submission prL,

and we use num(ELδ) to denote the numerator. Using this notation, we then have

ELδ = num(ELδ)/prL. Substituting hI in, putting in appropriate integral bounds and

expressing f as a function of g, we express the probability of a limit buy as follows:

prL = γL · (zM − zL)−
1

4

1−zL∫

1−zM

(δ − (1− zM ))g(δ)dδ,

where γL := (1 +G(1− zL))/4. Probability prL can also be expressed as

prL = γM · (zM − zL) +
1

4

1−zL∫

1−zM

(1− zL − δ)g(δ)dδ, (46)

where γM := 1/4(1+G(1−zM )). The numerator of the ELδ function can be expressed as

num(ELδ) = −
1

4

1−zL∫

1−zM

δ(1− zL − δ)g(δ)dδ +
1

4
(zM − zL)

1∫

1−zM

δg(δ)dδ, (47)

where we used identity zM − zL = (1− zL − δ) + (zM − 1 + δ). Define βL and βM as

βL = −
∂num(ELδ)

∂zL
=

1

4

1∫

1−zL

δg(δ)dδ and βM =
∂num(ELδ)

∂zM
=

1

4

1∫

1−zM

δg(δ)dδ (48)

Lemma 5 (Bounds on ELδ) Expectation ELδ satisfies ELδ < zM/2.
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Proof sketch: We use the following bounds on expressions for num(ELδ) and prL:

num(ELδ) ≤
1

4
(zM − zL)

1∫

1−zM

δg(δ)dδ and prL ≥ γM · (zM − zL)

to obtain

ELδ ≤
(1−G(1− zM )E[δ|δ ≥ 1− zM ]

1 +G(1− zM )
<

zM

2
.

Further details are in the proof of the existence of zL; specifically, see equation (51).

Lemma 6 (Monotonicity of ELδ) Function ELδ increases in zL and in zM :

(i) ∂ELδ/∂zL > 0 and (ii) ∂ELδ/∂zM > 0.

Proof of (i): Differentiating ELδ with respect to zL, we obtain

∂ELδ

∂zL
=

1

prL

[
∂num(ELδ)

∂zL
− ELδ

∂prL

∂zL

]
=

1

prL

(
γLELδ − βL

)
.

Since prL ≥ 0 (with equality only at zL = zM ), it suffices to show that prL(γLELδ −

βL) > 0 for all zL ∈ [0, zM ). We will show that prL(γLELδ − βL) is strictly decreasing

in zL on [0, zM0. The desired inequality then follows because prL(γLELδ − βL) = 0 at

zL = zM . Differentiating prL(γLELδ − βL), we obtain

∂(prL(γLELδ − βL))

∂zL
= −

1

4
(1− zL + ELδ)g(1− zL) < 0 (49)

Proof of (ii): Differentiating ELδ with respect to zM , we obtain

∂ELδ

∂zM
=

1

prL

[
∂num(ELδ)

∂zM
− ELδ

∂prL

∂zM

]
=

1

prL

(
βM − γMELδ

)
.
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The derivative is positive if βMprL − γMnum(ELδ) > 0. Expanding this,

βMprL − γMnum(ELδ) =
1

4

1−zL∫

1−zM

δ(1− zL − δ)g(δ)dδ ·
(
γM + βM

)
> 0. (50)

Lemma 7 (MLRP Results) For a family of densities g(δ|θ) that obeys MLRP in

θ, i.e. for θ1 > θ2, g(δ|θ1)/g(δ|θ2) increases in δ, (i) probability of a limit buy prL

decreases in θ, and (ii) expectation ELδ decreases in θ.

The proof is obtained by direct computation, using the definition of the monotone

likelihood ratio property. Details will be made available in the Internet Appendix.

Lemma 7 implies that solution zL is largest for the uniform distribution of innova-

tions δt. If this solution is below zM/3 then zL is below zM/3 for any distribution ḡ.

Results for the uniform distribution can be obtained by direct (numerical) computation.

Existence of zL∗ (z
M ). First, we establish that for any given zM there exists

zL∗ (z
M ) ∈ [0, zM ] that solves the indifference condition for the marginal limit order

buyer (39). To see this, observe that (i) at zL = 0, we have ELδ > 0 = zL, since

num(ELδ) =
1

4

1∫

1−zM

δ(δ − (1− zM − 1))g(δ)dδ > 0;

(ii) at zL = zM , we have ELδ > 0 = zL; to see this, note that both, prL and num(ELδ)

are 0 at zL = zM . Hence,

ELδ|zL=ym =
∂num(ELδ)/∂zL |zL=zM

∂prL/∂zL |zL=zM
=

(1/4) ·
∫ 1

1−zM
δg(δ)dδ

(1/4) + (1/4) ·G(1− zM)

=
(1−G(1− zM )E[δ | δ ≥ 1− zM ]

1 +G(1− zM )
≤

(1−G(1− zM )(2− zM )/2

1 +G(1− zM)
≤

zM

2
,

where the inequalities hold because the uniform distribution FOSD G (hence, E[δ | δ ≥

1− zM ] ≤ (2− zM)/2 and G(1− zM) ≥ 1− zM . Existence follows by continuity of ELδ.
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Lemma 8 (Bounds on zL∗ (z
M)) Any zL that solves zL = ELδ for a given zM must

be below zM/2.

Proof: The lemma follows since (i) ELδ is increasing in zL and (ii) at zL = zM we have

ELδ < zM/2.

Uniqueness of zL∗ (z
M ). To show uniqueness, we will show that for a fixed zM

function z(zL) := ELδ− zL only crosses 0 once on [0, zM ]. Note that z(0) > 0 > z(zM ).

Since z(·) is continuous, it suffices to show that at zL such that z(zL) = 0, we have

∂z/∂zL < 0. (That is z(·) must cross 0 from above and cannot touch the x-axis). We

need to show that at zL such that z(zL) = 0 (in what follows “at solution”), we have

∂ELδ/∂zL < 1.

At solution, ∂ELδ/∂zL < 1 ⇔ prL > γLELδ − βL ⇔ prL > γLzL − βL. Since

γLzL − βL = 1
2
zL − 1

4
(1−G(1− zL))(E[δ | δ > 1− zL] + zL), it suffices to show that

prL >
1

2
zL −

1

4
(1−G(1− zL))(E[δ | δ > 1− zL] + zL). (51)

At at zL such that z(zL) = 0, zL · prL = num(ELδ); writing out the probability prL

explicitly and we can rewrite inequality (51) as:

(
1

4
+G(1− zL)

)
(zM − zL) +

1

4

1−zL∫

1−zM

δ − zM

zM − zL
· (δ − (1− zM)) · g(δ)dδ > 0. (52)

The first term is always positive. The second term is positive for zM ≤ 1/2 (since

δ > 1− zM ≥ zM ). ⇒ remains to prove the above inequality for zM > 1/2. Denote the

left-hand side of the above inequality by ∆L. Observe that ∆L = 0 at zL = zM (the

first term is 0, and the second is 0 by l’Hôpital’s rule). It thus suffices to show that
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∆L decreases in zL on [0, zM ]. Compute the appropriate derivative:

∂∆L

∂zL
= −

1

2
+

1

4

(
−g(1− zL)(1− zL − zM) +

1

(zM − zL)2

1−zL∫

1−zM

(δ2 − δ + zM (1− zM))g(δ)dδ

+(1−G(1− zL))− (zM − zL)g(1− zL)
)
.

Since δ2 − δ is minimized at δ = 1/2, the upper bound on the integral term depends

on zL. There are three possibilities (for zL < zM and zM < 1/2):

(i) For zL < 1 − zM < 1/2 < zM , we have, for δ ∈ [1 − zM , 1 − zL], δ2 − δ <

(1− zL)2 − (1− zL), and further, 1− zL − zM > 0. Thus

1−zL∫

1−zM

(δ2 − δ + zM (1− zM ))g(δ)dδ < (1− zL − zM )g(1− zL).

Consequently, since 1−G(1− zL) < 1,

∂∆L

∂zL
< −

1

2
+

1

4
(1−G(1− zL))−

1

4
(zM − zL)g(1− zL) < 0.

(ii) For 1 − zM < zL < 1/2 < zM , we have, for δ ∈ [1 − zM , 1 − zL], δ2 − δ <

(1− zM )2− (1− zM ), and further, 1− zL− zM < 0 and 2zL−1 < 0. The integral

term is then negative. Consequently, since 1−G(1− zL) < 1,

∂∆L

∂zL
< −

1

2
+

1

4
(1−G(1− zL)) +

1

4
(2zL − 1)g(1− zL) < 0.

(iii) For 1 − zM < 1/2 < zL < zM , we have, for δ ∈ [1 − zM , 1 − zL], δ2 − δ <

(1− zM )2− (1− zM ), and further, 1− zL− zM < 0 and 2zL−1 > 0. The integral

term is then negative, and we have

∂∆L

∂zL
< −

1

4
−

1

4
G(1− zL) +

1

4
(2zL − 1)g(1− zL).
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Using the upper bound on g from Lemma (4), it remains to show that

−1−G(1− zL) + (2zL − 1)
G(1− zL)

1− zL
< 0.

The above inequality is true for all zL < 3/4, since:

−(1− zL) + (−1 + zL + 2zL − 1)G(1− zL) < 4zL − 3 < 0.

We have thus shown that function z(zL) = ELδ− zL only crosses 0 once on [0, zM ], for

any fixed zM .

We have thus shown existence and uniqueness of zL that solves the indifference

equation for the limit order buyer, for all zM ∈ [0, 3/4].

A.2.4 Step 2: Monotonicity of zL∗ (z
M )

To show that zL increases in zM , it suffices to show that the partial derivative of

z(zL, zM) in zM is positive (the positive partial derivative implies that z, viewed as a

function of zL, will then necessarily cross 0 further to the right, since it crosses from

above). This is equivalent to showing that ∂ELδ/∂zM > 0, which in turn follows from

Lemma 6.

A.2.5 Step 3: Existence of zM

Similarly to ELδ, we derive the expressions for prM and num(EMδ) = EMδ/prM , for

zM ∈ [0, 3/4]:

prM =
1

4
(1− zM ) +

1

4
(1− zM ) G(1− zM) +

1

4

1∫

1−zM

δg(δ)dδ

num(EMδ) =
1

4

1−zM∫

0

2δ2g(δ)dδ +
1

4

1∫

1−zM

δ(1− zM + δ)g(δ)dδ
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Existence of zM that solves equation (43), i.e. zM that solves (1 − prM)zM − EMδ +

prMzL∗ (z
M)) = 0, follows by continuity. At zM = 0, the LHS =−EMδ < 0 (the

inequality is strict, because num(EMδ) > 0 and prM > 0). At zM = 3/4, we have

(1− prM)zM − EMδ + prMzL∗ (z
M)) > (1− prM)zM − EMδ

> (1− prM)zM − EMδ |for uniform distribution g> 0.

A.2.6 Step 4: Optimality of the Threshold Strategies

The intuition for the optimality of the threshold strategies stems from competitive

pricing and stationarity of investor decisions. An investor’s deviation from one equilib-

rium action to another equilibrium action will not affect equilibrium bid and ask prices

or probabilities of the future order submissions. Consequently, it is possible to show

that the difference between a payoff to a market order and a payoff to a limit order at

the equilibrium price to an investor with an aggregate valuation above zM is strictly

greater than 0. (The formal argument is to be typeset).

Out-Of-The-Equilibrium-Beliefs. A more complex scenario arises when an in-

vestor deviates from his equilibrium strategy by submitting an limit order at a price

different to the prescribed competitive equilibrium price. Whether or not this investor

expects to benefit from such a deviation depends on the reaction to this deviation by

the low-latency liquidity providers and investors in the next period. For instance, can

an investor increase the execution probability of his limit buy order by posting a price

that is above the equilibrium bid price?

We employ a perfect Bayesian equilibrium concept. This concept prescribes that

investors and low-latency liquidity providers update their beliefs by Bayes rule, when-

ever possible, but it does not place any restrictions on the beliefs of market participants

when they encounter an out-of-equilibrium action.

To support competitive prices in equilibrium we assume that if a limit buy order
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is posted at a price different to the competitive equilibrium bid price bid∗t+1, then

market participants hold the following beliefs regarding this investor’s knowledge of

the period t innovation δt.

If a limit buy order is posted at a price b̂id < bid∗t+1, then market participants

assume that this investor followed the equilibrium threshold strategy, but “made a

mistake” when pricing his orders. A low-latency liquidity provider then updates his

expectation about δt to the equilibrium value and posts a buy limit order at bid∗t+1.

The original investor’s limit order then executes with zero probability.

If a limit buy order is posted at a price b̂id > bid∗t+1, then market participants believe

the this order stems from an investor from a sufficiently high aggregate valuation

(e.g., zt = 2) and update their expectations about δt to E[δt | b̂id] accordingly (to

E[δt | b̂id] = 1 if the belief on zt is zt = 2). The new posterior expectation of Vt equals

to pt−1 + E[δt | b̂id]. A low-latency liquidity provider is then willing to post a bid price

bid∗∗t+1 ≤ pt−1 + E[δt | b̂id] + E[δt+1 | MSt+1]. With the out-of-the-equilibrium belief

of δt = 1 and with the bid-ask spread< 1, a limit order with the new price bid∗∗t+1

outbids any limit buy order that yields investors positive expected profits.

The beliefs upon an out-of-equilibrium sell order are symmetric. The above out-of-

equilibrium beliefs ensure that no investor deviates from his equilibrium strategy.

We want to emphasize that these beliefs and actions do not materialize in equilib-

rium. Instead, they can be loosely thought of as a “threat” to ensure that investors do

not deviate from their prescribed equilibrium strategies.
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Figure 1: Entry and Order Submission Timeline

This figure illustrates the timing of events upon the arrival of an investor at an arbitrary period, t, until their departure from the market.
Value yt is the private valuation of the period t investor and δt is the innovation to the security’s fundamental value in period t.

t

Period t investor

enters market,

learns yt and δt

Period t investor

submits order (if any)

Period t− 1 limit orders either

trade against the period t market order

or get cancelled

Period t− 1 investor

leaves market

Low-latency liquidity providers post limit

orders to empty side(s) of the book

t+1

Period t+ 1 investor

enters market,

learns yt+1 and δt+1

Period t+ 1 investor

submits order (if any)

Period t limit orders either

trade against the period t+ 1 market order

or get cancelled

Period t investor

leaves market
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Figure 2: Equilibrium Thresholds and Payoffs to the Marginal Market and Limit Orders: Flat Fee

The left panel depicts the equilibrium aggregate valuations zM (red line) and zL (blue line) for the marginal market and limit order
submitters, respectively. The right panel depicts the expected payoff that the investors with an aggregate valuation of zM and zL receive
in equilibrium, as functions of the taker fee f . Both panels are for the setting where investors pay a flat, average fee per trade. An
investor submits a market buy order when his aggregate valuation zt is above zM , a limit buy order when zL ≤ zt < zM , and abstains
from trading when |zt| < zL; sell decision are symmetric to buy decisions. The plot illustrates that as f increases, investors submit more
market orders and fewer limit orders. There exist the level of the taker fee f0 > 0, at which the investor with aggregate valuation zM

receives zero profit from submitting a market order. The plot illustrates that investors do not submit limit orders for values of f ≥ f0.
Parameter α in the distribution of innovations is set to α = 1.5; results for other values of α are qualitatively similar.
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Figure 3: Trading Volume and Market Participation: Flat Fee

The left panel plots trading volume, measured as Pr(market order), as a function of the taker fee f , for the setting where investors pay a
flat fee per trade. The right panel plots the level of market participation, measured as Pr(market order) + Pr(limit order), as a function
of the taker fee level f . The value f0 represents the taker fee level at which the equilibrium threshold values zM and zL coincide, and the
marginal market order submitter zM earns zero profits in expectation. Parameter α in the distribution of innovations is set to α = 1.5;
results for other values of α are qualitatively similar.
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Figure 4: Quoted and Cum-Fee Spreads

The left panel plots the quoted spread (the inner, blue lines) and the cum-fee spread (the outer, red lines) as a function of the taker
fee f , for the setting where all traders pay maker-taker fees. The right panel plots the quoted spread (the inner, blue lines) and the
cum-fee spread (the outer, red lines) as a function of the taker fee f , for the setting in which the investor pays a flat fee per trade. The
value f0 represents the taker fee level at which the equilibrium threshold values zM and zL coincide, and the marginal market order
submitter zM earns zero profits in expectation. Parameter α in the distribution of innovations is set to α = 1.5; results for other values
of α are qualitatively similar.
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Figure 5: Price Impact

The left panel plots price impact, quoted, and cum-fee half-spreads as functions of the taker fee f for the setting where all traders pay
maker-taker fees per trade. The right panel plots price impact, quoted, and cum-fee half-spreads as functions of the taker fee f for the
setting in which investors pay a flat fee per trade. The value f0 represents the taker fee level at which the equilibrium threshold values
zM and zL coincide, and the marginal market order submitter zM earns zero profits in expectation. Parameter α in the distribution of
innovations is set to α = 1.5; results for other values of α are qualitatively similar.
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Figure 6: Social Welfare: Flat Fee

The figure plots total expected social welfare, as defined in Section 4, as a function of the taker fee f , for the setting where investors pay
a flat fee per trade. The value f0 represents the taker fee level at which the equilibrium threshold values zM and zL coincide, and the
marginal market order submitter zM earns zero profits in expectation. Parameter α in the distribution of innovations is set to α = 1.5;
results for other values of α are qualitatively similar.
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